Generic theorems in the theory of cardinal invariants of topological spaces

Authors

DOI:

https://doi.org/10.4995/agt.2019.10682

Keywords:

cardinal functions, compact spaces, Lindelöf spaces, weak Hausdorff number of a space

Abstract

The main aim of this paper is to present a technical result, which provides an algorithm to prove several cardinal inequalities and relative versions of cardinal inequalities related. Moreover, we use this result and the weak Hausdorff number, H∗, introduced by Bonanzinga in [Houston J. Math. 39 (3) (2013), 1013–1030], to generalize some upper bounds on the cardinality of topological spaces.

Downloads

Download data is not yet available.

Author Biographies

Alejandro Ramírez-Páramo, Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Electrónica

Jesús F. Tenorio, Universidad Tecnológica de la Mixteca

Instituto de Física y Matemáticas

References

O. T. Alas, More topological cardinal inequalities, Colloq. Math. 65, no. 2 (1993), 165-168. https://doi.org/10.4064/cm-65-2-165-168

A. V. Arhangel'skii, A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin. 36, no. 2 (1995), 303-325.

A. V. Arhangel'skii, The power of bicompacta with first axiom of countability, Sov. Math. Dokl. 10 (1969), 951-955.

A. Bella, On two cardinal inequalities involving free sequences, Topology Appl. 159 (2012), 3640-3643. https://doi.org/10.1016/j.topol.2012.09.008

M. Bonanzinga, D. Stavrova and P. Staynova, Separation and cardinality - Some new results and old questions, Topology Appl. 221 (2017), 556-569. https://doi.org/10.1016/j.topol.2017.02.007

M. Bonanzinga, On the Hausdorff number of a topological space, Houston J. Math. 39, no. 3 (2013), 1013-1030.

F. Cammaroto, A. Catalioto and J. Porter, On the cardinality of Hausdorff spaces, Topology Appl. 160 (2013), 137-142. https://doi.org/10.1016/j.topol.2012.10.007

F. Cammaroto, A. Catalioto and J. Porter, On the cardinality of Urysohn spaces,

A. Charlesworth, On the cardinality of a topological space, Proc. Amer. Math. Soc. 66, no. 1 (1977), 138-142. https://doi.org/10.1090/S0002-9939-1977-0451184-8

A. A. Gryzlov, Two theorems on the cardinality of topological spaces, Soviet Math. Dokl. 21 (1980), 506-509.

R. E. Hodel, A technique for proving inequalities in cardinal functions, Topology Proc. 4 (1979), 115-120.

R. E. Hodel, Arhangel'skii's solution to Alexandroff's problem: A survey, Topology Appl. 153, no. 13 (2006), 2199-2217. https://doi.org/10.1016/j.topol.2005.04.011

R. E. Hodel, Cardinal functions I, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 1-61. https://doi.org/10.1016/B978-0-444-86580-9.50004-5

I. Juhász, Cardinal functions in topology- 10 years later, Math. Center Tract. 123, Amsterdam, 1980.

S. Shu-Hao, Two new topological cardinal inequalities, Proc. Amer. Math. Soc. 104 (1988), 313-316. https://doi.org/10.2307/2047509

S. Spadaro, A short proof of a theorem of Juhász, Topology Appl. 158, no. 16 (2011), 2091-2093. https://doi.org/10.1016/j.topol.2011.06.002

S. Willard and U. N. B. Dissanayake, The almost Lindelöf degree, Canad. Math. Bull. 27, no. 4 (1984), 452-455. https://doi.org/10.4153/CMB-1984-070-2

Downloads

Published

2019-04-01

How to Cite

[1]
A. Ramírez-Páramo and J. F. Tenorio, “Generic theorems in the theory of cardinal invariants of topological spaces”, Appl. Gen. Topol., vol. 20, no. 1, pp. 211–222, Apr. 2019.

Issue

Section

Regular Articles