Further aspects of I K-convergence in topological spaces


  • Ankur Sharmah Tezpur University
  • Debajit Hazarika Tezpur University




I-convergence, I K-convergence, I K∗ -convergence, I K-sequential space, I K-cluster point


In this paper, we obtain some results on the relationships between different ideal convergence modes namely, I K, I K∗ , I, K, I ∪ K and (I ∪K) ∗ . We introduce a topological space namely I K-sequential space and show that the class of I K-sequential spaces contain the sequential spaces. Further I K-notions of cluster points and limit points of a function are also introduced here. For a given sequence in a topological space X, we characterize the set of I K-cluster points of the sequence as closed subsets of X.


Download data is not yet available.

Author Biographies

Ankur Sharmah, Tezpur University

Department of Mathematical Sciences

Debajit Hazarika, Tezpur University

Professor, Department of Mathematical Sciences

Department of Mathematical Sciences


A. K. Banerjee and M. Paul, A note on IK and IK∗-convergence in topological spaces, arXiv:1807.11772v1 [math.GN], 2018.

B. K. Lahiri and P. Das, I and I⋆-convergence of nets, Real Anal. Exchange 33 (2007), 431-442. https://doi.org/10.14321/realanalexch.33.2.0431

B. K. Lahiri and P. Das, I and I⋆-convergence in topological spaces, Math. Bohemica 130 (2005), 153-160. https://doi.org/10.21136/MB.2005.134133

H. Fast, Sur la convergence statistique, Colloq. Math, 2(1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244

K. P. Hart, J. Nagata and J. E. Vaughan. Encyclopedia of General Topology, Elsevier Science Publications, Amsterdam-Netherlands, 2004.

M. Macaj and M. Sleziak, IK-convergence, Real Anal. Exchange 36 (2011), 177-194. https://doi.org/10.14321/realanalexch.36.1.0177

P. Das, M. Sleziak and V. Tomac, IK-Cauchy functions, Topology Appl. 173 (2014), 9-27. https://doi.org/10.1016/j.topol.2014.05.008

P. Das, S. Dasgupta, S. Glab and M. Bienias, Certain aspects of ideal convergence in topological spaces, Topology Appl. 275 (2020), 107005. https://doi.org/10.1016/j.topol.2019.107005

P. Das, S. Sengupta, J and Supina, IK-convergence of sequence of functions, Math. Slovaca 69, no. 5(2019), 1137-1148. https://doi.org/10.1515/ms-2017-0296

P. Halmos and S. Givant, Introduction to Boolean Algebras, Undergraduate Texts in Mathematics, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-68436-9

P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Anal. Exchange 26 (2001), 669-685. https://doi.org/10.2307/44154069

S. K. Pal, I-sequential topological spaces, Appl. Math. E-Notes 14 (2014), 236-241.

X. Zhou, L. Liu and L. Shou, On topological space defined by I-convergence, Bull. Iranian Math. Soc. 46 (2020), 675-692. https://doi.org/10.1007/s41980-019-00284-6




How to Cite

A. Sharmah and D. Hazarika, “Further aspects of I K-convergence in topological spaces”, Appl. Gen. Topol., vol. 22, no. 2, pp. 355–366, Oct. 2021.