Fixed point property of amenable planar vortexes

Authors

DOI:

https://doi.org/10.4995/agt.2021.15096

Keywords:

amenable group, CW space, fixed point, planar vortex, presentation

Abstract

This article introduces free group representations of planar vortexes in a CW space that are a natural outcome of results for amenable groups and fixed points found by M.M. Day during the 1960s and a fundamental result for fixed points given by L.E.J. Brouwer.

Downloads

Download data is not yet available.

Author Biographies

James Francis Peters, University of Manitoba ; Adiyaman University

Computational Intelligence Laboratory ;Department of Mathematics, Faculty of Arts and Sciences

Tane Vergili, Karadeniz Technical University

Department of Mathematics

References

C. Adams and R. Franzosa, Introduction to topology: Pure and applied, 1st ed., Pearson, London, UK, (2008), 512 pp., ISBN-13: 9780131848696.

L. Boxer, O. Ege, I. Karaca, J. Lopez and and J. Louwsma, Digital fixed points, approximate fixed points and universal functions, Applied General Topology 17 (2016), no. 2, 159-172. https://doi.org/10.4995/agt.2016.4704

L. E. J. Brouwer, Über abbildung von mannigfaltigkeiten, Math. Ann. 71 (1911), 97-115. https://doi.org/10.1007/BF01456931

E. Cech, Topological spaces, John Wiley & Sons Ltd., London, (1966), fr seminar, Brno, 1936-1939.

A. Di Concilio, C. Guadagni, J. F. Peters and S. Ramanna, Descriptive proximities. Properties and interplay between classical proximities and overlap, Math. Comput. Sci. 12 (2018), 91-106. https://doi.org/10.1007/s11786-017-0328-y

M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. https://doi.org/10.1215/ijm/1255380675

M. M. Day, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585-590. https://doi.org/10.1215/ijm/1255631582

J. Frisch, O. Tamuz and P. V. Ferdowsi, Strong amenability and the infinite conjugacy class property, Invent. Math. 218, no. 3 (2019), 833-351. https://doi.org/10.1007/s00222-019-00896-z

S. Kakutani, Two fixed-point theorems concerning bicompact convex sets, Proc. Imp. Acad. Tokyo 14, no. 7 (1938), 242-245. https://doi.org/10.3792/pia/1195579652

A. A. Markov, Quelques thérè sur les ensembles abéliens, C.R. (Doklady) Acad. Sci. URSS (N.S.) 1 (1936), 311-313.

S. A. Naimpally and J. F. Peters, Topology with applications. Topological spaces via near and far, World Scientific, Singapore, (2013), xv + 277 pp, Amer. Math. Soc. https://doi.org/10.1142/8501

S. A. Naimpally and B. D. Warrack, Proximity spaces, Cambridge Tract in Mathematics No. 59, Cambridge University Press, Cambridge, UK, 1970, x+128 pp., Paperback (2008).

J. F. Peters, Topology of digital images. Visual pattern discovery in proximity spaces, Intelligent Systems Reference Library, vol. 63, Springer, (2014), xv + 411pp.

J. F. Peters, Vortex nerves and their proximities. Nerve Betti numbers and descriptive proximity, Bull. Allahabad Math. Soc. 34, no. 2 (2019), 263-276.

J. F. Peters, Ribbon complexes & their approximate descriptive proximities. Ribbon & vortex nerves, Betti numbers and planar divisions, Bull. Allahabad Math. Soc. 35 (2020), 31-53.

A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6

J. J. Rotman, The theory of groups. An introduction, Springer-Verlag, New York, 1965, 1995, xvi+513 pp. ISBN: 0-387-94285-8.

E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.,CA, (1966), xiv+528 pp. https://doi.org/10.1007/978-1-4684-9322-1_5

J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proceedings of the London Math. Soc. 45 (1939), 243-327. https://doi.org/10.1112/plms/s2-45.1.243

J. H. C. Whitehead, Combinatorial homotopy. I, Bulletin of the American Mathematical Society 55, no. 3 (1949), 213-245. https://doi.org/10.1090/S0002-9904-1949-09175-9

Downloads

Published

2021-10-01

How to Cite

[1]
J. F. Peters and T. Vergili, “Fixed point property of amenable planar vortexes”, Appl. Gen. Topol., vol. 22, no. 2, pp. 385–397, Oct. 2021.

Issue

Section

Articles