On cofree S-spaces and cofree S-flows


  • Behnam Khosravi Institute for Advanced Studies in Basic Sciences




S-space, S-flow, Cofree S-space, Cofree S-flow Compact-open topology, Injective S-space


Let S-Tych be the category of Tychonoff S-spaces for a topological monoid S. We study the cofree S-spaces and cofree S-flows over topological spaces and we prove that for any topological space X and a topological monoid S, the function space C(S,X) with the compact-open topology and the action s · f = (t → f(st)) is the cofree S-space over X if and only if the compact-open topology is admissible and Tychonoff. Finally we study injective S-spaces and we characterize injective cofree S-spaces, when the compact-open topology is admissible and Tychonoff. As a consequence of this result, we characterize the cofree S-spaces and cofree S-flows, when S is a locally compact topological monoid.


Download data is not yet available.

Author Biography

Behnam Khosravi, Institute for Advanced Studies in Basic Sciences

Department of Mathematics, Institute for Advanced Studies in Basic Sciences,Zanjan 45137-66731, Iran


R. N. Ball, S. Geschke and J. N. Hagler, Injective and projective T-Boolean algebras, J. Pure Appl. Algebra 209, no. 1 (2007), 1–36. http://dx.doi.org/10.1016/j.jpaa.2006.05.004

J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on semigroups. Function spaces, compactifications, representations Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1989.

J. Dugundji, Topology, Wm. C. Brown Publishers, 1989.

M. M. Ebrahimi and M. Mahmoudi, The Category of M-sets, Ital. J. Pure Appl. Math. 9 (2001), 123–132.

M. H. Escardo, Function-Space Compactifications of Function Spaces, Topology Appl. 120, no. 3 (2002), 441–463. http://dx.doi.org/10.1016/S0166-8641(01)00089-X

M. H. Escardo, J. Lawson and A. Simpson, Comparing Cartesian closed categories of (core) compactly generated spaces, Topology Appl. 143, no. 1-3 (2004), 105–144. http://dx.doi.org/10.1016/j.topol.2004.02.011

E. Glasner and M. G. Megrelishvili, New algebras of functions on topological groups arising from G-spaces, Fund. Math. 201 (2008), 1–51. http://dx.doi.org/10.4064/fm201-1-1

D. N. Georgiou, Topologies on function spaces and hyperspaces, Appl. Gen. Topol. 10, no. 1 (2009), 159–170.

N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification. Theory and applications, Walter de Gruyter & Co., Berlin, 1998. http://dx.doi.org/10.1515/9783110809220

B. Khosravi, On free and projective S-spaces and flows over a topological monoid, Asian European Journal of Math. 3, no. 3 (2010), 443–456. http://dx.doi.org/10.1142/S1793557110000350

B. Khosravi, Free topological acts over a topological monoid, Quasigroup and Related

M. Kilp, U. Knauer and A. Mikhalev, Monoids, Acts and Categories, Walter deGruyter, Berlin, New York, 2000. http://dx.doi.org/10.1515/9783110812909

J. Lawson and A. Lisan, Flows, congruences, and factorizations, Topology Appl. 58, no. 1 (1994), 35–46. http://dx.doi.org/10.1016/0166-8641(94)90072-8

M. G. Megrelishvili, Free topological G-groups, New Zealand J. Math. 25, no. 1 (1996), 59–72.

M. G. Megrelishvili, Topological Transformation Groups: Selected Topics, in: Elliott Pearl, Editor, Open problems in topology. II. Elsevier B. V., Amsterdam, 2007. http://dx.doi.org/10.1016/B978-044452208-5/50043-0

M. G. Megrelishvili, Reflexively representable but not Hilbert representable compact flows and semitopological semigroups, Colloq. Math. 110 (2006), 383–407. http://dx.doi.org/10.4064/cm110-2-5

J. R. Munkres, Topology, 2nd Ed., Prentice-Hall, New Jersy, 2000.

P. Normak, Topological S-acts: Preliminaries and Problems, Transformation semigroups 199 (1993), 60–69, , Univ. Essex, Colchester.systems 18, no. 1 (2010), 25–42.




How to Cite

B. Khosravi, “On cofree S-spaces and cofree S-flows”, Appl. Gen. Topol., vol. 13, no. 1, pp. 1–10, Apr. 2012.