Some results and examples concerning Whyburn spaces

Authors

  • Ofelia T. Alas Universidade de Sao Paulo
  • Maira Madriz-Mendoza Universidad Autónoma Metropolitana
  • Richard G. Wilson Universidad Autónoma Metropolitana

DOI:

https://doi.org/10.4995/agt.2012.1633

Keywords:

Whyburn space, Weakly Whyburn space, Submaximal space, Scattered space, Semiregular, Feebly compact

Abstract

We prove some cardinal inequalities valid in the classes of Whyburn and hereditarily weakly Whyburn spaces and we construct examples of non-Whyburn and non-weakly Whyburn spaces to illustrate that some previously known results cannot be generalized.

Downloads

Download data is not yet available.

Author Biographies

Ofelia T. Alas, Universidade de Sao Paulo

Instituto de Matemática e Estatística, Universidade de Sao Paulo, Caixa Postal 66281, 05311-970 Sao Paulo, Brasil

Maira Madriz-Mendoza, Universidad Autónoma Metropolitana

Departamento de Matemáticas, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco, #186, Apartado Postal 55-532, 09340, México, D.F., México

Richard G. Wilson, Universidad Autónoma Metropolitana

Departamento de Matemáticas, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco, #186, Apartado Postal 55-532, 09340, México, D.F., México

References

A. Bella, C. Costantini and S. Spadaro, The Whyburn property in the class of P-spaces, Quaderni del Dipartimento di Matematica, Universitá de Torino, Quaderno 17/2007.

R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.

I. Juhász, Cardinal Functions in Topology - Ten years later, Mathematisch Centrum, Amsterdam, 1980.

J. Pelant, M. G. Tkachenko, V. V. Tkachuk and R. G. Wilson, Pseudocompact Whyburn spaces need not be Fréchet, Proc. Amer. Math. Soc. 131, no. 10 (2003), 3257–3265. http://dx.doi.org/10.1090/S0002-9939-02-06840-5

J. R. Porter and R. G. Woods, Extensions and Absolutes, Springer Verlag, New York, 1987.

E. A. Reznichenko, A pseudocompact space in which only sets of complete cardinality are not closed and not discrete, Moscow Univ. Math. Bull. 6 (1989), 69–70 (in Russian).

V. V. Tkachuk and I. V. Yashchenko, Almost closed sets and the topologies they determine, Comment. Math. Univ. Carolinae 42, no. 2 (2001), 395–405.

Downloads

Published

2012-04-15

How to Cite

[1]
O. T. Alas, M. Madriz-Mendoza, and R. G. Wilson, “Some results and examples concerning Whyburn spaces”, Appl. Gen. Topol., vol. 13, no. 1, pp. 11–19, Apr. 2012.

Issue

Section

Articles