Function lattices and compactifications


  • Tomi Matias Alaste University of Oulu



Function lattice, F-filter, F-ultrafilter, spectrum


Let F be a lattice of real-valued functions on a non-empty set X such that F contains the constant functions. Using certain filters on X determined by F, we construct a compact Hausdorff topological space δX with the property that every bounded member of F extends to δX and these extensions form a dense subspace of C(δX). If A is any C*-subalgebra of ℓ∞(X) containing the constant functions, then our construction gives a representation of the spectrum of A as a space of filters on X.


Download data is not yet available.


T. Alaste, U-filters and uniform compactification, Studia Math. 211 (2012), 215-229.


T. Alaste, Semigroup compactifications in terms of filters,

(submitted) (arxiv:1302.1742).

T. Budak and J. Pym, Local topological structure in the LUC-compactification of a locally compact group and its relationship with Veech's theorem, Semigroup Forum 73 (2006), 159-174.


J. F. Berglund and N. Hindman, Filters and the weak almost periodic compactification of a discrete semigroup, Trans. Amer. Math. Soc. 284 (1984), 1-38.


W.W. Comfort and S. Negrepontis, The theory of ultrafilters,

(Springer-Verlag, New York, 1974).

G.B. Folland, A course in abstract harmonic analysis,

(CRC Press, Boca Raton, FL, 1995).

L. Gillman and M. Jerison, Rings of continuous functions,

(Springer-Verlag, New York, 1976).

N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification, (Walter de Gruyter & Co., Berlin, 1998).

J.R. Isbell, Uniform spaces, (American Mathematical Society, Providence, R.I., 1964).

G. J. O. Jameson, Topology and normed spaces, (Chapman and Hall, London, 1974).

M. Kocak and D. Strauss, Near ultrafilters and compactifications, Semigroup Forum 55 (1997), 94-109.

S. A. Naimpally and B. D. Warrack, Proximity spaces (Cambridge University Press, London, 1970).

M. A. Tootkaboni and A. Riazi, Ultrafilters on semitopological semigroups, Semigroup Forum 70 (2005), 317-328.


R.C. Walker, Stone-Cech compactification, (Springer-Verlag, New York, 1974).

S. Willard, General topology, (Addison-Wesley, Reading, 1970).




How to Cite

T. M. Alaste, “Function lattices and compactifications”, Appl. Gen. Topol., vol. 15, no. 2, pp. 183–202, May 2014.