Convergence S-compactifications

Authors

  • Bernd Losert University of Central Florida
  • Gary Richardson University of Central Florida

DOI:

https://doi.org/10.4995/agt.2014.3156

Keywords:

convergence space, convergence semigroup, continuous action, S-compactification.

Abstract

Properties of continuous actions on convergence spaces are investigated. The primary focus is the characterization as to when a continuous action on a convergence space can be continuously extended to an action on a compactification of the convergence space. The largest and smallest such compactifications are studied.

Downloads

Download data is not yet available.

References

H. Boustique, P. Mikusinski and G. Richardson, Convergence semigroup actions: generalized quotients, Appl. Gen. Topol. 10 (2009), 173 -186.

(http://dx.doi.org/10.4995/agt.2009.1731)

H. Boustique, P. Mikusinski and G. Richardson, Convergence semigroup categories, Appl. Gen. Topol. 11, no. 2 (2010), 67-88.

(http://dx.doi.org/10.4995/agt.2010.1709)

J. de Vries, On the existence of G -compactifications, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 26, no. 3 (1978), 275-280.

W. H. Gottschalk and G. A. Hedlund, Topological D ynamics, volume 36. American Mathematical Society, 1955.

H. H. Keller, Die Limes-uniformisierbarkeit der Limesräume, Mathematische Annalen 176, no. 4 (1968), 334-341.

(http://dx.doi.org/10.1007/BF02052894)

D. C. Kent and G. D. Richardson, Regular compactifications of convergence spaces, Proc. Amer. Math. Soc. 31 (1972), 571-573.

(http://dx.doi.org/10.1090/S0002-9939-1972-0286074-2)

D. C. Kent and G. D. Richardson, Open and proper maps between convergence spaces, Czechoslovak Mathematical Journal 23, no. 1 (1973), 15-23.

D. C. Kent and G. D. Richardson, Locally compact convergence spaces, The Michigan Mathematical Journal 22, no. 4 (1975), 353-360.

D. C. Kent and G. D. Richardson, Compactifications of convergence spaces, Internat. J. Math. Math. Sci. 2, no. 3 (1979), 345-368.

(http://dx.doi.org/10.1155/S0161171279000302)

E. Lowen-Colebunders, Function Classes of Cauchy Continuous Maps, M. Dekker, 1989.

G. Preuss, Foundations of Topology: An Approach to Convenient Topology, Kluwer Academic Publishers, Dordrecht, 2002.

(http://dx.doi.org/10.1007/978-94-010-0489-3)

E. E. Reed, Completions of uniform convergence spaces, Mathematische Annalen 194, no. 2 (1971), 83-108.

(http://dx.doi.org/10.1007/BF01362537)

Downloads

Published

2014-07-25

How to Cite

[1]
B. Losert and G. Richardson, “Convergence S-compactifications”, Appl. Gen. Topol., vol. 15, no. 2, pp. 121–136, Jul. 2014.

Issue

Section

Articles