Best Proximity Points for Cyclical Contractive Mappings

Authors

  • J. Maria Felicit St. Joseph's College, Tiruchirappalli, India
  • A. Anthony Eldred St. Joseph's College Tiruchirappalli

DOI:

https://doi.org/10.4995/agt.2015.3242

Keywords:

best proximity point, p-cyclic mapping, cyclical contractive mapping, cyclical proximal property

Abstract

We consider p-cyclic mappings and prove an analogous result to Edelstien contractive theorem for best proximity points. Also we give similar results satisfying Boyd-Wong and Geraghty contractive conditions.

Downloads

Download data is not yet available.

References

A. A. Anthony Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323, No.2,(2006), 1001-1006.

http://dx.doi.org/10.1016/j.jmaa.2005.10.081

D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20(1969),458-464.

http://dx.doi.org/10.1090/S0002-9939-1969-0239559-9

Calogero Vetro, Best proximity points: Convergence and existence theorem for p- cyclic mappings, Nonlinear Anal., 73 (2010), 2283-2291.

http://dx.doi.org/10.1016/j.na.2010.06.008

C. Di Bari, T. Suzuki and C. Vetro, Best proximity points for cyclic Meir-Keeler contraction, Non-linear Anal., 69 (2008) 3790 -3794.

http://dx.doi.org/10.1016/j.na.2007.10.014

M. Edelstein, On fixed and periodic points under contractive mapping. J. London Math. Soc., 37 (1962), 74-79.

http://dx.doi.org/10.1112/jlms/s1-37.1.74

M. Geraghty, On contractive mapping, Proc. Am. Math. Soc.,40(1973),604-608.

http://dx.doi.org/10.1090/S0002-9939-1973-0334176-5

S. Karpagam and S. Agrawal, Best proximity point theorems for p-cyclic Meir -Keeler contractions, Fixed point theory Appl., 2009(2009), Article ID 197308.

http://dx.doi.org/10.1155/2009/197308

W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mapping satisfying cyclical contractive condition. Fixed point theory. 4 (2003), 79-89.

Downloads

Published

2015-10-01

How to Cite

[1]
J. M. Felicit and A. A. Eldred, “Best Proximity Points for Cyclical Contractive Mappings”, Appl. Gen. Topol., vol. 16, no. 2, pp. 119–126, Oct. 2015.

Issue

Section

Articles