Baire property in product spaces

Authors

  • Constancio Hernández Universidad Autónoma Metropolitana
  • Leonardo Rodríguez Medina Universidad Autónoma Metropolitana
  • Mikhail Tkachenko Universidad Autónoma Metropolitana

DOI:

https://doi.org/10.4995/agt.2015.3439

Keywords:

Baire space, strongly Baire space, skeletal mapping, Banach-Mazur-Choquet game, paratopological group, semitopological group.

Abstract

We show that if a product space $\mathit\Pi$ has countable cellularity, then a dense subspace $X$ of $\mathit\Pi$ is Baire provided that all projections of $X$ to countable subproducts of $\mathit\Pi$ are Baire. It follows that if $X_i$ is a dense Baire subspace of a product of spaces having countable $\pi$-weight, for each $i\in I$, then the product space $\prod_{i\in I} X_i$ is Baire. It is also shown that the product of precompact Baire paratopological groups is again a precompact Baire paratopological group. Finally, we focus attention on the so-called \textit{strongly Baire} spaces and prove that some Baire spaces are in fact strongly Baire.

Downloads

Download data is not yet available.

References

J. M. Aarts and D. J. Lutzer, Pseudo-completeness and the product of Baire spaces, Pacific J. Math. 48 (1973), 1-10.(http://dx.doi.org/10.2140/pjm.1973.48.1)

O.T. Alas and M. Sanchis, Countably compact paratopological groups, Semigroup Forum 74, no. 3 (2007), 423-438.(http://dx.doi.org/10.1007/s00233-006-0637-y)

A. V. Arhangel'skii and E. A. Reznichenko, Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005), 107-119.(http://dx.doi.org/10.1016/j.topol.2003.08.035)

T. Banakh and O.Ravsky, Oscillator topologies on a paratopological group and related number invariants, Algebraic Structures and their Applications, Kyiv: Inst. Mat. NANU (2002), pp. 140-152.

N. Bourbaki, Elements of mathematics. General topology. Part 2, Hermann, Paris, 1966.

A. Bouziad, Every Cech-analytic Baire semitopological group is a topological group, Proc. Amer. Math. Soc. 124, no. 3 (1996), 953-959. (http://dx.doi.org/10.1090/S0002-9939-96-03384-9)

M. Bruguera and M. Tkachenko, Pontryagin duality in the class of precompact Abelian groups and the Baire property, J. Pure Appl. Algebra 216, no. 12 (2012), 2636-2647.(http://dx.doi.org/10.1016/j.jpaa.2012.03.035)

J. Chaber and R. Pol, On hereditarily Baire spaces, $sigma$-fragmentability of mappings and Namioka property, Topology Appl. 151, no. 1-3 (2005), 132-143.(http://dx.doi.org/10.1016/j.topol.2004.04.011)

P.E. Cohen, Products of Baire spaces, Proc. Amer. Math. Soc. 55 (1976), 119-124.(http://dx.doi.org/10.1090/S0002-9939-1976-0401480-4)

W. W. Comfort and K. A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1996), 483-496. (http://dx.doi.org/10.2140/pjm.1966.16.483)

W.Fleissner and K.Kunen, Barely Baire spaces, Fund. Math. 101, no. 3 (1978), 229-240.

Z. Frolík, Baire spaces and some generalizations of complete metric spaces, Czechoslovak Math. J. 11, no. 86 (1961), 237-248.

Z. Frolík, Concerning the invariance of Baire spaces under mappings, Czechoslovak Math. J. 11, no. 3 (1961), 381-385.

R. E. Hodel, Moore spaces and $wDelta $-spaces, Pacific J. Math. 38 (1971), 641-652.(http://dx.doi.org/10.2140/pjm.1971.38.641)

P. S. Kenderov, I. S. Kortezov and W. B. Moors, Topological games and topological groups, Topology Appl. 109, no. 2 (2001), 157-165. (http://dx.doi.org/10.1016/S0166-8641(99)00152-2)

J.van Mill and R. Pol, The Baire category theorem in products of linear spaces and topological groups, Topolology Appl. 22, no. 3 (1986), 267-282. (http://dx.doi.org/10.1016/0166-8641(86)90025-8)

W. B. Moors, The product of a Baire space with a hereditarily Baire metric space is Baire, Proc. Amer. Math. Soc. 134, no. 7 (2006), 2161-2163. (http://dx.doi.org/10.1090/S0002-9939-06-08389-4)

J. C. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1960/1961), 157-166.

Z. Piotrowski, Separate and joint continuity in Baire groups, Tatra Mt. Math. Publ. 14 (1998), 109-116.

A. Ravsky, The topological and algebraic properties of paratopological groups, Ph.D. Thesis, Lviv University, 2003.

A. Ravsky, Pseudocompact paratopological groups that are topological, ArXiv e-prints, arXiv:1003.5343 [math.GR], April 2012.

M. Sanchis and M. Tkachenko, Feebly compact paratopological groups and real-valued functions, Monatsh. Math. 168, no. 3-4 (2012), 579-597. (http://dx.doi.org/10.1007/s00605-012-0444-3)

M. Tkachenko, Some results on inverse spectra. II, Comment. Math. Univ. Carolin. 22, no. 4 (1981), 819-841.

M. Tkachenko, Group reflection and precompact paratopological groups, Topol. Algebra Appl. 1 (2013), 22-30.

V. V. Tkachuk, The spaces $C_p(x)$: decomposition into a countable union of bounded subspaces and completeness properties, Topology Appl. 22 (1986), 241-253. (http://dx.doi.org/10.1016/0166-8641(86)90023-4)

M. Valdivia, Products of Baire topological vector spaces, Fund. Math. 125, no. 1, 71-80.

V. Valov, External characterization of I-fa-vora-ble spaces, arXiv:1005.0074 [math.GR], 2010.

E. K. van Douwen, An unbaireable stratifiable space, Proc. Amer. Math. Soc. 67, no. 2 (1977), 324-326.(http://dx.doi.org/10.1090/S0002-9939-1977-0474220-1)

H. E. White, Jr., Topological spaces that are $alpha$-favorable for a player with perfect information, Proc. Amer. Math. Soc. 50 (1975), 477-482.

Downloads

Published

2015-02-05

How to Cite

[1]
C. Hernández, L. Rodríguez Medina, and M. Tkachenko, “Baire property in product spaces”, Appl. Gen. Topol., vol. 16, no. 1, pp. 1–13, Feb. 2015.

Issue

Section

Articles