Mapping the scientific structure of organization and management of enterprises using complex networks




Complex networks, community detection, doctoral theses, pattern recognition, interdisciplinarity, Organization and management of enterprises


Understanding the scientific and social structure of a discipline is a fundamental aspect for scientific evaluation processes, identifying trends and niches, and balancing the trade-off between exploitation and exploration in research. In the present contribution, the production of doctoral theses is used as a proxy to analyze the scientific structure of the knowledge area of business organization in Spain. To that end, a complex networks approach is selected, and two different networks are built: (i) the social network of co-participation in thesis examining committees and thesis supervision, and (ii) a bipartite network of theses and thesis descriptors. The former has a modular structure that is partially explained by thematic specialization in different subdisciplines. The latter serves to assess the interdisciplinary structure of the discipline, as it enables the characterization of affinity levels between fields, research poles and thematic clusters. Our results have implications for the scientific evaluation and formal definition of related fields.


Download data is not yet available.

Author Biography

Alicia Olivares-Gil, Universidad de Burgos

Departamento de Ingeniería Informática


Barabási, A. ., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and Its Applications, 311(3-4), 590-614.

Bascompte, J. (2007). Networks in ecology. Basic and Applied Ecology, 8(6), 485-490.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.

Castelló i Cogollos, L. C., Bueno Cañigral, F. J., & Valderrama Zurián, J. C. (2019). Análisis de redes sociales y bibliométrico de las tesis españolas sobre drogodependencias en la base de datos TESEO. Adicciones, 31(4), 309-323.

Cheng, F., Kovács, I. A., & Barabási, A.-L. (2019). Network-based prediction of drug combinations. Nature Communications, 10(1), 1197.

Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659, 1-44.

Garrido-Labrador, J. L., Ramírez-Sanz, J. M., Ahedo, V., Arnaiz-Rodríguez, A., García-Osorio, C., Santos, J. I., & Galán, J. M. (2021). Network analysis of co-participation in thesis examination committees in an academic field in Spain. Dirección y Organización.

Grossman, W. J. (1997). Paul Erdos: The master of collaboration. Algorithms and Combinatorics, 14, 467-475.

Havlin, S., Kenett, D. Y., Ben-Jacob, E., Bunde, A., Cohen, R., Hermann, H., … Solomon, S. (2012). Challenges in network science: Applications to infrastructures, climate, social systems and economics. The European Physical Journal Special Topics, 214(1), 273-293.

Latora, V., Nicosia, V., & Russo, G. (2017). Complex Networks. Principles, Methods and Applications. Cambridge, UK: Cambridge University Press.

Martínez-Frías, J., & Hochberg, D. (2007). Classifying science and technology: Two problems with the UNESCO system. Interdisciplinary Science Reviews, 32(4), 315-319.

Mata, A. S. da. (2020). Complex Networks: a Mini-review. Brazilian Journal of Physics, 50(5), 658-672.

Newman, M. E. J. (2001a). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 8.

Newman, M. E. J. (2001b). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 7.

Newman, M. E. J. (2001c). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404-409.

Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45(2), 167-256.

Newman, M. E. J. (2018). Networks. Oxford, UK: Oxford University Press.

Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925-979.

Price, D. J. S. (1965). Networks of Scientific Papers. Science, 149(3683), 510-515.

Repiso, R., Torres, D., & Delgado, E. (2011). Análisis bibliométrico y de redes sociales en tesis doctorales españolas sobre televisión (1976/2007). (Spanish). Comunicar, 18(37), 151-159.

Rodrigues, F. A. (2019). Network Centrality: An Introduction. In E. E. N. Macau (Ed.), A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems (pp. 177-196). Springer.

Ruiz-Martin, C., Ramirez-Ferrero, M., Gonzalez-Alvarez, J. L., & López-Paredes, A. (2015). Modeling of a Nuclear Emergency Plan: Communication Management. Human and Ecological Risk Assessment: An International Journal, 21(5), 1152-1168.

Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A., & White, D. R. (2009). Economic Networks: The New Challenges. Science, 325(5939), 422-425.

Sedighi, M. (2016). Application of word co-occurrence analysis method in mapping of the scientific fields (case study: the field of Informetrics). Library Review, 65(1-2), 52-64.

UNESCO, N. (1988). Proposed international standard nomenclature for fields of science & technology. Paris: United Nations Educational, Scientific and Cultural Organization.

Villarroya, A., Barrios, M., Borrego, A., & Frías, A. (2008). PhD theses in Spain: A gender study covering the years 1990-2004. Scientometrics, 77(3), 469-483.

Watts, D. J. (1999). Small World. Princeton, NJ: Princeton University Press.