Mapping the scientific structure of organization and management of enterprises using complex networks

Authors

DOI:

https://doi.org/10.4995/ijpme.2022.16666

Keywords:

Complex networks, community detection, doctoral theses, pattern recognition, interdisciplinarity, Organization and management of enterprises

Abstract

Understanding the scientific and social structure of a discipline is a fundamental aspect for scientific evaluation processes, identifying trends and niches, and balancing the trade-off between exploitation and exploration in research. In the present contribution, the production of doctoral theses is used as a proxy to analyze the scientific structure of the knowledge area of business organization in Spain. To that end, a complex networks approach is selected, and two different networks are built: (i) the social network of co-participation in thesis examining committees and thesis supervision, and (ii) a bipartite network of theses and thesis descriptors. The former has a modular structure that is partially explained by thematic specialization in different subdisciplines. The latter serves to assess the interdisciplinary structure of the discipline, as it enables the characterization of affinity levels between fields, research poles and thematic clusters. Our results have implications for the scientific evaluation and formal definition of related fields.

Downloads

Download data is not yet available.

Author Biography

Alicia Olivares-Gil, Universidad de Burgos

Departamento de Ingeniería Informática

References

Barabási, A. ., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and Its Applications, 311(3-4), 590-614. https://doi.org/10.1016/S0378-4371(02)00736-7

Bascompte, J. (2007). Networks in ecology. Basic and Applied Ecology, 8(6), 485-490. https://doi.org/10.1016/j.baae.2007.06.003

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008

Castelló i Cogollos, L. C., Bueno Cañigral, F. J., & Valderrama Zurián, J. C. (2019). Análisis de redes sociales y bibliométrico de las tesis españolas sobre drogodependencias en la base de datos TESEO. Adicciones, 31(4), 309-323. https://doi.org/10.20882/adicciones.1150

Cheng, F., Kovács, I. A., & Barabási, A.-L. (2019). Network-based prediction of drug combinations. Nature Communications, 10(1), 1197. https://doi.org/10.1038/s41467-019-09186-x

Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659, 1-44. https://doi.org/10.1016/j.physrep.2016.09.002

Garrido-Labrador, J. L., Ramírez-Sanz, J. M., Ahedo, V., Arnaiz-Rodríguez, A., García-Osorio, C., Santos, J. I., & Galán, J. M. (2021). Network analysis of co-participation in thesis examination committees in an academic field in Spain. Dirección y Organización.

Grossman, W. J. (1997). Paul Erdos: The master of collaboration. Algorithms and Combinatorics, 14, 467-475.

Havlin, S., Kenett, D. Y., Ben-Jacob, E., Bunde, A., Cohen, R., Hermann, H., … Solomon, S. (2012). Challenges in network science: Applications to infrastructures, climate, social systems and economics. The European Physical Journal Special Topics, 214(1), 273-293. https://doi.org/10.1140/epjst/e2012-01695-x

Latora, V., Nicosia, V., & Russo, G. (2017). Complex Networks. Principles, Methods and Applications. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781316216002

Martínez-Frías, J., & Hochberg, D. (2007). Classifying science and technology: Two problems with the UNESCO system. Interdisciplinary Science Reviews, 32(4), 315-319. https://doi.org/10.1179/030801807X183605

Mata, A. S. da. (2020). Complex Networks: a Mini-review. Brazilian Journal of Physics, 50(5), 658-672. https://doi.org/10.1007/s13538-020-00772-9

Newman, M. E. J. (2001a). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 8. https://doi.org/10.1103/PhysRevE.64.016131

Newman, M. E. J. (2001b). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 7. https://doi.org/10.1103/PhysRevE.64.016132

Newman, M. E. J. (2001c). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404-409. https://doi.org/10.1073/pnas.98.2.404

Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45(2), 167-256. https://doi.org/10.1137/S003614450342480

Newman, M. E. J. (2018). Networks. Oxford, UK: Oxford University Press. https://doi.org/10.1093/oso/9780198805090.001.0001

Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925-979. https://doi.org/10.1103/RevModPhys.87.925

Price, D. J. S. (1965). Networks of Scientific Papers. Science, 149(3683), 510-515. https://doi.org/10.1126/science.149.3683.510

Repiso, R., Torres, D., & Delgado, E. (2011). Análisis bibliométrico y de redes sociales en tesis doctorales españolas sobre televisión (1976/2007). (Spanish). Comunicar, 18(37), 151-159. https://doi.org/10.3916/C37-2011-03-07

Rodrigues, F. A. (2019). Network Centrality: An Introduction. In E. E. N. Macau (Ed.), A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems (pp. 177-196). Springer. https://doi.org/10.1007/978-3-319-78512-7_10

Ruiz-Martin, C., Ramirez-Ferrero, M., Gonzalez-Alvarez, J. L., & López-Paredes, A. (2015). Modeling of a Nuclear Emergency Plan: Communication Management. Human and Ecological Risk Assessment: An International Journal, 21(5), 1152-1168. https://doi.org/10.1080/10807039.2014.955383

Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A., & White, D. R. (2009). Economic Networks: The New Challenges. Science, 325(5939), 422-425. https://doi.org/10.1126/science.1173644

Sedighi, M. (2016). Application of word co-occurrence analysis method in mapping of the scientific fields (case study: the field of Informetrics). Library Review, 65(1-2), 52-64. https://doi.org/10.1108/LR-07-2015-0075

UNESCO, N. (1988). Proposed international standard nomenclature for fields of science & technology. Paris: United Nations Educational, Scientific and Cultural Organization.

Villarroya, A., Barrios, M., Borrego, A., & Frías, A. (2008). PhD theses in Spain: A gender study covering the years 1990-2004. Scientometrics, 77(3), 469-483. https://doi.org/10.1007/s11192-007-1965-8

Watts, D. J. (1999). Small World. Princeton, NJ: Princeton University Press. https://doi.org/10.1515/9780691188331

Downloads

Published

2022-01-31

Issue

Section

Papers