Light transmitting cement-based material (LTCM) as a green material for building




self-compacting mortars, polymeric optical fibers, translucent concrete, optical properties, mechanical properties, water reducing admixture


In recent years, light-transmitting cement-based materials (LTCM) have become important in the construction of green buildings because these reduce energy consumption for lighting. LTCMs were prepared by adding polymeric optical fibers (POFs) in a high strength self-compacting mortar (SCM). SCM was formulated from Portland cement, fine sand and water reducing admixture following the EFNARC criteria. LTCMs with a constant fiber content (5%) and three fiber diameter (0.75, 1 and 1.5 mm) were prepared by casting fresh SCM into a formwork designed ad hoc to keep the fibers fixed and aligned. Light transmitting performance of LTCM was tested by optical power measures. The effects of fiber diameter and distance between sample and detector on the optical power were evaluated. The compressive strength of hardened SCM reached a value of 69 MPa at an age of 28 days, while the LTCMs maintained sufficient strength for structural purposes. LTCMs are suitable to produce precast blocks and wall panels for application in building facades, signage and decorative art.


Download data is not yet available.

Author Biographies

Agustina Robles, Universidad Nacional de Mar del Plata

Facultad de Ingeniería

Gustavo F. Arenas, Universidad Nacional de Mar del Plata

Instituto de Investigaciones Científicas y Tecnológicas en Electrónica (ICYTE)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Pablo M. Stefani, Universidad Nacional de Mar del Plata

Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)


Ahuja, A., & Mosalam, K.M. (2017). Evaluating energy consumption saving from translucent concrete building envelope. Energy and Buildings, 153, 448-460.

Altlomate, A., Alatshan, F., Mashiri, F., & Jadan, M. (2016). Experimental study of light-transmitting concrete. International Journal of Sustainable Building Technology and Urban Development, 7(3-4),133-139.

Bass, M., & Van Stryland, E.W. (2002). Fiber Optic Handbook - Fiber, Devices, and Systems for Optical Communications. McGraw-Hill.

Berli, M.E., Brondino, A., & Di Paolo, J. (2018). Prediction of thermal impact reduction in a double wall building. Ingenius. Revista de Ciencia y Tecnología, (20), 38-47.

EFNARC (2005). The European Guidelines for Self-Compacting Concrete Specification, Production and Use "The European Guidelines for Self Compacting Concrete."

Faccin, F., Pascuzzi, N., Alvarez, G., Belmonte, J., & Stefani, P.M. (2017). Diseño de hormigones autocompactantes (hac) con agregados de la región sudeste de la provincia de buenos aires. CAIQ 2017.

Fornasier, G., Fava, C., Luco, L.F., & Zitzer, L. (2003). Design of Self Compacting Concrete for Durability of Prescriptive vs. Performance-Based Specifications. ACI Symposium, Special Publication, 212, 197-210.

Henriques, T., Dal Molin, D.C., & Masuero, Â.B. (2018). Study of the influence of sorted polymeric optical fibers (POFs) in samples of a light-transmitting cement-based material (LTCM). Construction and Building Materials, 161, 305-315.

Hoyos Montilla, A.A. (2012). Concreto translúcido transmisión de luz visible a través de morteros con fluorita como agregado fino. Maestría thesis, Universidad Nacional de Colombia, Sede Medellín.

IRAM 1505 - Agregados. Análisis granulométrico., IRAM (2019).

IRAM 1512 - Agregado fino para hormigón de cemento. Requisitos. IRAM (2013).

IRAM 1520 - Agregados finos. Métodos de laboratorio para la determinación de la densidad relativa real, de la densidad relativa aparente y de la absorción de agua, IRAM (2002).

IRAM 1534 - Hormigón de cemento pórtland. Preparación y curado de probetas para ensayos en laboratorios, IRAM (1985).

IRAM 1622 -Determinación de resistencias mecánicas IRAM (2002).

IRAM 1634 - Método para la determinación del contenido de aire en morteros, IRAM (1963).

IRAM 1663 - Hormigón de cemento. Aditivos químicos, IRAM (2002).

IRAM 50001 - Cementos. Cementos para uso general. Composición y requisitos, IRAM (2019).

Kamdi, A.B. (2013). Transparent concrete as a green material for building. International Journal of Structural and Civil Engineering Research, 2(3), 172-175.

Li, Y., & Xu, Z. (2012). Preparation method of light transmitting concrete using optical fiber fabrics. China Patent No. ZL201110022019.

Li, Y., Li, J., & Guo, H. (2015a). Preparation and study of light transmitting properties of sulfoaluminate cement-based materials. Materials and Design, 83, 185-192.

Li, Y., Li, J., Wan, Y., & Xu, Z. (2015b). Experimental study of light transmitting cement-based material (LTCM). Construction and Building Materials, 96, 319-325.

Liu, X., Liu, L. (2010). A light transmitting concrete component and its manufacturing process. CN101906836A, 2010 (China Patent).

Okamura, H., & Ouchi, M. (2003). Self-Compacting Concrete. Journal of Advanced Concrete Technology, 1(1), 5-15.

Salih, S.A., Joni, H.H., & Mohamed, S.A. (2014). Effect of Plastic Optical Fiber on Some Properties of Translucent Concrete. Engineering and Technology Journal, 32(12 Part (A) Engineering), 2846-2861.

Sangshetty, P.R., & Dhawale, A.. (2017). An Overview of energy Efficiency of Translucent Concrete. IJAIEM, 6(2), 37-40.

Schiopetto, F., & Stefani, P.M. (2015). Self-compacting concrete containing silica fume: evaluation of mortar properties. COMAT 2015.

Yadav, A., Shekhar, S., Anand, A., & Badal, A. (2018). An Investigating Study on a new Innovative Material: Transparent Concrete. International Journal of Engineering Research and Advanced Development, 4(1), 64-72.