Implementation of a warning system against engine overheating in vehicles with multipoint injection

Authors

  • Cristian Paredes Universidad de las Fuerzas Armadas ESPE
  • Pablo Guayllas Universidad de la Fuerzas Armadas ESPE
  • Ricardo Méndez Universidad de la Fuerzas Armadas ESPE
  • Alexander Pozo Universidad de la Fuerzas Armadas ESPE

DOI:

https://doi.org/10.4995/jarte.2022.17392

Keywords:

Alert system, Engine overheating, Temperature measurement, Automobile

Abstract

The temperature in a vehicle is a fundamental factor for its correct operation. When a failure occurs in the original temperature sensor, irreversible damage to engine components can occur due to overheating. In the present work, an auxiliary temperature system is implemented that alerts the driver before an eventual overheating of the engine by means of sound, visual and vibratory signals. The system compares the data provided by an LM35 temperature sensor and a Hall effect sensor in charge of counting the RPM in real time, using an Arduino, continuously processing the data and constantly informing the driver via an LCD screen. When a critical temperature is exceeded, an audible alarm will sound and a vehicle injector will be disabled. The system does not turn off the engine and is efficient in its purpose of alerting the driver, being suitable to implement in vehicles with multipoint injection due to its low cost of implementation.

Downloads

Download data is not yet available.

Author Biographies

Cristian Paredes, Universidad de las Fuerzas Armadas ESPE

Departamento de Energía y Mecánica

Pablo Guayllas, Universidad de la Fuerzas Armadas ESPE

Departamento de Energía y Mecánica

Ricardo Méndez, Universidad de la Fuerzas Armadas ESPE

Departamento de Energía y Mecánica

Alexander Pozo, Universidad de la Fuerzas Armadas ESPE

Departamento de Energía y Mecánica

References

Baker Perkins Ltd. (2016). Oven Safety Monitoring. Product Catalogue. Recovered from https://www.bakerperkins.com/customer-services/customer-services-pet-food/parts-dry-pet-food

Brace, C., Hawley, J., Vagenas, A., & Joyce, S. (2005). Cylinder head metal temperature control – a proof of concept study. Journal of Automobile Engineering. Vol. 219. DOI: 10.1243/095440705X6730

Cho, H., & Niuwstadt, M. (2017). Piston temperature model oriented to control applications in diesel engines. Journal of Automobile Engineering. Vol. 232. https://doi.org/10.1177%2F0954407017731680

Dennis, M. (2004). Engine piston temperature measurements for thermal loading using a fiber bragg grating (FBG) embedded into the piston surface. Master thesis, University of Wisconsin, Madison. https://minds.wisconsin.edu/bitstream/handle/1793/35299/2004%20-%20Dennis%20Ward.pdf?sequence=1&isAllowed=y

Haro, D., and Haro, K. (2018). Análisis del sobrecalentamiento y deformación de la culata de cilindros y junta de culata de un motor Hino 205. Engineering thesis, Universidad Tecnica del Norte UTN, Ibarra, Ecuador. Repositorio UTN. http://repositorio.utn.edu.ec/handle/123456789/7869

Hideaki, M., Koichi, A., Atsushi, T., Kenshi, U., & Shinichi, T. (2009). Transient Analysis of the Piston Temperature with Consideration of In-cylinder Phenomena Using Engine Measurement and Heat Transfer Simulation Coupled with Three-dimensional Combustion Simulation. SAE International Journal of Engines. Vol. 2, pp. 83-90. https://www.jstor.org/stable/26308379

Mancaruso, E., and Sequino, L. (2019). Measurements and modeling of piston temperature in a research compression ignition engine during transient conditions. Results in Engineering. Vol. 2, Elsevier. https://doi.org/10.1016/j.rineng.2019.100007

Paredes, C. (2011). Diseño y construcción de un módulo de entrenamiento de un motor a inyección electrónica MPFI. Engineering thesis, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador. Repositorio ESPE. http://repositorio.espe.edu.ec/handle/21000/3974

Romero, C., Carranza, Y., & Quintero, H. (2007). Modelado del calentamiento de los motores de combustión. Scientia Et Technica, Vol. XIII, pp. 249-254. https://www.researchgate.net/publication/26612528_Modelado_del_calentamiento_de_los_motores_de_combustion

Sequino, L., Mancaruso, E., & Vaglieco, B. (2018). Experimental measurements of piston temperature and evaluation of heat flux in engine at transient conditions. Conference paper. https://www.researchgate.net/publication/330423717_Experimental_measurements_of_piston_temperature_and_evaluation_of_heat_flux_in_engine_at_transient_conditions

Texas Instruments. (2016). DRV5023 Digital-Switch Hall Effect Sensor. Texas: Texas Instruments. Recovered from https://www.ti.com/store/ti/en/p/product/?p=DRV5023FAQDBZR&HQS=ti-null-null-ds360-invf-store-ds360-wwe

Texas Instruments. (2017). LM35 Precision Centigrade Temperature Sensors. Texas: Texas Instruments. Recovered from https://www.ti.com/store/ti/en/p/product/?p=LM35DZ/LFT1&HQS=ti-null-null-ds360-invf-store-ds360-wwe

Zheng, C., Wu, J., Zhai, X., Yang, G. & Wang, R. (2016). Experimental and modeling investigation of an ICE (internal combustion engine) based micro-cogeneration device considering overheat protection controls. Energy. Elsevier, vol. 101(C), pp. 447-461. https://doi.org/10.1016/j.energy.2016.02.030

Downloads

Published

2022-07-29

Issue

Section

Articles