Control Super-Twisting con adaptación basada en cruce por cero. Análisis de estabilidad y validación
DOI:
https://doi.org/10.4995/riai.2022.17214Palabras clave:
Control por Modos Deslizantes, Adaptación de Ganancias, Algoritmo Super-Twisting, Sistemas de PotenciaResumen
En los últimos años, los algoritmos de control diseñados a partir de técnicas por Modos Deslizantes de Segundo Orden (MDSO) se han consolidado como una importante alternativa al modos deslizantes tradicional. Dentro de estos algoritmos, el control por MDSO Super-Twisting permite una importante reducción del chattering (oscilaciones de alta frecuencia), gracias a su acción de control continua, manteniendo las características de robustez y convergencia en tiempo finito deseadas. Sin embargo, en su implementación práctica, en ciertas ocasiones es necesario sobredimensionar las ganancias del controlador, con el objetivo de permitir el rechazo de grandes, aunque usualmente esporádicas, perturbaciones. Esto redunda inevitablemente en un incremento en el esfuerzo del controlador y, por ende, en un incremento del chattering del sistema.
De esta manera, en este trabajo se presenta el análisis de estabilidad y validación de un mecanismo de Adaptación de Ganancias para un algoritmo de control por MDSO Super-Twisting. El mismo, continúa con el enfoque de adaptación basada en cruce por cero desarrollado por Pisano et al. para sistemas con grado relativo 2. El algoritmo propuesto es evaluado, en primera instancia. por simulación para el caso de aplicación de un sistema de potencia. Posteriormente, el sistema controlado es implementado y validado experimentalmente en una plataforma de 700W. Los resultados obtenidos mostraron una importante reducción del chattering y similares características de robustez, en comparación con el algoritmo Super-Twisting tradicional.
Descargas
Citas
Anderson, J., More, J., Puleston, P., 2019. Design and stability analysis of a super-twisting controller for a PS-FBC-based fuel cell module. Advanced Control for Applications 1. https://doi.org/10.1002/adc2.19
Bartolini, G., Ferrara, A., Levant, A., Usai, E., 1993. On second order sliding mode controllers, in: VSS, SM and Nonlinear Control., pp. 329-350. https://doi.org/10.1007/BFb0109984
Bartolini, G., Levant, A., Plestan, F., Taleb, M., Punta, E., 2013. Adaptation of sliding modes. IMA JMCI 30. https://doi.org/10.1093/imamci/dns019
Boiko, I., Fridman, L., Pisano, A., Usai, E., 2007. Performance analysis of second-order sliding-mode control systems with fast actuators. IEEE Transactions on Automatic Control 52, 1053-1059. https://doi.org/10.1109/TAC.2007.899090
Boubzizi, S., El Sied, M., Bester, J.E., Mabwe, A.M., 2018. Cascaded Adaptive Super Twisting controller for DC/DC converters in electrical vehicle applications, in: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, pp. 2007-2014. https://doi.org/10.1109/IECON.2018.8591380
Derbeli, M., Barambones, O., Ramos-Hernanz, J.A., Sbita, L., 2019. Real-time implementation of a super twisting algorithm for pem fuel cell power system. Energies 12. https://doi.org/10.3390/en12091594
Edwards, C., Shtessel, Y., 2019. Enhanced continuous higher order sliding mode control with adaptation. Journal of the Franklin Institute 356, 4773-4784. https://doi.org/10.1016/j.jfranklin.2018.12.026
Fridman, L., Moreno, J., Bandyopadhyay, B., Kamal, S., Chalanga, A., 2015. Continuous Nested Algorithms : The Fifth Generation of Sliding Mode Controllers. Springer, Cham. volume 24. chapter 1. pp. 5,35. https://doi.org/10.1007/978-3-319-18290-2_2
Gonzalez, T., Moreno, J.A., Fridman, L., 2012. Variable Gain Super-Twisting Sliding Mode Control. IEEE TAC 57, 2100. https://doi.org/10.1109/TAC.2011.2179878
Hernández, D., Castaños, F., Fridman, L., 2016. Zero-dynamics design and its application to the stabilization of implicit systems. Systems & Control Letters 98, 74-78. https://doi.org/10.1016/j.sysconle.2016.10.008
Hidalgo, H., Huerta, H., 2021. Control por modos deslizantes para vehículo eléctrico con velocidad diferencial. Revista Iberoamericana de Automática e Informática industrial 18, 115-124. https://doi.org/10.4995/riai.2020.13440
Kunusch, C., Puleston, P.F., Mayosky, M.A., 2008. Estudio de Algoritmos 2- Deslizantes Aplicados al Control de Pilas de Combustible. Revista Iberoamericana de Automática e Informática Industrial RIAI. https://doi.org/10.1016/S1697-7912(08)70161-4
Levant, A., 1993. Sliding order and sliding accuracy in sliding mode control. International Journal of Control 58, 1247-1263. https://doi.org/10.1080/00207179308923053
Luo, D., Xiong, X., Jin, S., Kamal, S., 2018. Adaptive gains of dual level to super-twisting algorithm for sliding mode design. IET Control Theory Applications 12, 2347-2356. https://doi.org/10.1049/iet-cta.2018.5380
Pisano, A., Tanelli, M., Ferrara, A., 2012. Time-based switched sliding mode control for yaw rate regulation in two-wheeled vehicles, in: 2012 CDC, pp. 5028-5033. https://doi.org/10.1109/CDC.2012.6426311
Pisano, A., Tanelli, M., Ferrara, A., 2016. Switched/time-based adaptation for second-order sliding mode control. Automatica 64, 126 - 132. https://doi.org/10.1016/j.automatica.2015.11.006
Rakhtala, S.M., Casavola, A., 2022. Real-time voltage control based on a cascaded super twisting algorithm structure for dc-dc converters. IEEE Transactions on Industrial Electronics 69, 633-641. https://doi.org/10.1109/TIE.2021.3051551
Shtessel, Y., Edwards, C., Fridman, L., Levant, A., 2014. Sliding Mode Control and Observation. Springer New York. https://doi.org/10.1007/978-0-8176-4893-0
Shtessel, Y., Taleb, M., Plestan, F., 2012. A novel adaptive-gain supertwisting sliding mode controller: Methodology and application. Automatica 48, 759- 769. https://doi.org/10.1016/j.automatica.2012.02.024
Silva-Ortigoza, R., Sira-Ramírez, H., Hernández-Guzmán, V.M., 2008. Control por Modos Deslizantes y Planitud Diferencial de un Convertidor de CD/CD Boost: Resultados Experimentales. Revista Iberoamericana de Automática e Informática Industrial RIAI 5, 77-82. https://doi.org/10.1016/S1697-7912(08)70180-8
Terán, R., Pérez, J., Beristáin, J., Cárdenas, V., 2020. Sintonización del controlador en cascada PI-STA para aplicaciones de filtros activos de potencia. Revista Iberoamericana de Automática e Infomática industrial 17, 130-143. https://doi.org/10.4995/riai.2020.12403
Utkin, V., Poznyak, A., Orlov, Y., Polyakov, A., 2020. Road Map for Sliding Mode Control Design. Springer. https://doi.org/10.1007/978-3-030-41709-3
Utkin, V.I., Poznyak, A.S., 2013. Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method. Automatica 49, 39- 47. https://doi.org/10.1016/j.automatica.2012.09.008
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Jorge Luis Anderson, Moré, J.J., Puleston, P.F., Vicente Roda, Ramón Costa-Castelló

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)