Enfoques para la Resolución del Problema ELSP

Authors

  • Pilar I. Vidal-Carreras Universitat Politècnica de València

DOI:

https://doi.org/10.4995/wpom.v1i2.787

Keywords:

ELSP, Enfoques de Resolución, Ciclo Comun, Periodo Basico, Variacion de los Tamaños de Lote

Abstract

En este trabajo se pretende realizar una recopilación de los enfoques planteados en la literatura para la resolución del problema de Programación del Lote Económico, esto es, ELSP. Estos métodos son: Solución Independiente, Ciclo Común, Periodo Básico, Periodo Básico Extendido y Variación del Tamaño de Lote. Para cada una de las aproximaciones de solución se plantea a quien son atribuidas, el correspondiente modelo, así como una serie de referencias que lo han empleado.

Downloads

Download data is not yet available.

Author Biography

Pilar I. Vidal-Carreras, Universitat Politècnica de València

ROGLE - Departamento de Organización de Empresas

References

Ballou, R. H. (2004). Logística: Administración de la cadena de suministro. Pearson Educación.

Ben-Daya, M.; Hariga, M. (2000). Economic lot scheduling problem with imperfect production processes. Journal of the Operational Research Society, Vol. 51, nº. 7, pp. 875-881. http://dx.doi.org/10.1057/palgrave.jors.2600974

Bomberger, E. E. (1966). A dynamic programming approach to a lot size scheduling problem. Management Science, Vol. 12, nº. 11, p. 778. http://dx.doi.org/10.1287/mnsc.12.11.778

Brander, P.; Forsberg, R. (2004). Determination of safety stocks for cyclic schedules with stochastic demands. International Journal of Production Economics, Vol. In Press, Corrected Proof.

Brander, P.; Leven, E.; Segerstedt, A. (2005). Lot sizes in a capacity constrained facility - a simulation study of stationary stochastic demand. International Journal of Production Economics, Vol. 93-94, pp. 375-386. http://dx.doi.org/10.1016/j.ijpe.2004.06.034

Carstensen, P. (1999). The economic lot scheduling problem - survey and LP-based method. Or Spektrum, Vol. 21, nº. 4, pp. 429-460. http://dx.doi.org/10.1007/s002910050097

Chandrasekaran, C.; Rajendran, C.; Chetty, O. V. K.; Hanumanna, D. (2007). Metaheuristics for solving economic lot scheduling problems (ELSP) using time-varying lot-sizes approach. European Journal of Industrial Engineering, Vol. 1, nº. 2, pp. 152-181. http://dx.doi.org/10.1504/EJIE.2007.014107

Davis, S. G. (1990). Scheduling Economic Lot Size Production-Runs. Management Science, Vol. 36, nº. 8, pp. 985-998. http://dx.doi.org/10.1287/mnsc.36.8.985

Delporte, C. M.; Thomas, L. J. (1977). Lot Sizing and Sequencing for N-Products on One Facility. Management Science, Vol. 23, nº. 10, pp. 1070-1079. http://dx.doi.org/10.1287/mnsc.23.10.1070

Dobson, G. (1987). The Economic Lot-Scheduling Problem - Achieving Feasibility Using Time-Varying Lot Sizes. Operations Research, Vol. 35, nº. 5, pp. 764-771. http://dx.doi.org/10.1287/opre.35.5.764

Doll, C. L.; Whybark, D. C. (1973). An iterative procedure for the single-machine multi-product lot scheduling problem. Management Science, Vol. 20, nº. 1, pp. 50-55. http://dx.doi.org/10.1287/mnsc.20.1.50

Elmaghraby, S. E. (1978). The economic lot scheduling problem (ELSP): Review and extensions. Management Science, Vol. 24, nº. 6, pp. 587-598. http://dx.doi.org/10.1287/mnsc.24.6.587

Erlenkotter, D. (1990). Ford Whitman Harris and the economic order quantity model. Operations Research, Vol. 38, nº. 6, pp. 937-946. http://dx.doi.org/10.1287/opre.38.6.937

Eynan, A. (2003). The benefits of flexible production rates in the economic lot scheduling problem. IIE Transactions, Vol. 35, nº. 11, pp. 1057-1064. http://dx.doi.org/10.1080/07408170304400

Gallego, G. (1990). Scheduling the Production of Several Items with Random Demands in A Single Facility. Management Science, Vol. 36, nº. 12, pp. 1579-1592. http://dx.doi.org/10.1287/mnsc.36.12.1579

Gallego, G.; Moon, I. (1992). The Effect of Externalizing Setups in the Economic Lot Scheduling Problem. Operations Research, Vol. 40, nº. 3, pp. 614-619. http://dx.doi.org/10.1287/opre.40.3.614

Gallego, G.; Roundy, R. (1992). The Economic Lot Scheduling Problem with Finite Backorder Costs. Naval Research Logistics, Vol. 39, nº. 5, pp. 729-739. http://dx.doi.org/10.1002/1520-6750(199208)39:5<729::AID-NAV3220390510>3.0.CO;2-N

Gallego, G.; Shaw, D. X. (1997). Complexity of the ELSP with general cyclic schedules. IIE Transactions, Vol. 29, nº. 2, pp. 109-113. http://dx.doi.org/10.1080/07408179708966318

Gascon, A.; Leachman, R. C.; Lefrancois, F. (1994). Multi-item, single-machine scheduling problem with stochastic demands: a comparison of heuristics. International Journal of Production Research, Vol. 32, nº. 3, pp. 583-596. http://dx.doi.org/10.1080/00207549408956954

Giri, B. C.; Moon, I.; Yun, W. Y. (2003). Scheduling economic lot sizes in deteriorating production systems. Naval Research Logistics, Vol. 50, nº. 6, pp. 650-661. http://dx.doi.org/10.1002/nav.10082

Goyal, S. K. (1997). Observation on the economic lot scheduling problem: Theory and practice. International Journal of Production Economics, Vol. 50, nº. 1, p. 61. http://dx.doi.org/10.1016/S0925-5273(97)00025-X

Haessler, R. W. (1979). Improved Extended Basic Period Procedure for Solving the Economic Lot Scheduling Problem. AIIE transactions, Vol. 11, nº. 4, pp. 336-340. http://dx.doi.org/10.1080/05695557908974480

Haessler, R. W.; Hogue S.L (1976). A note on the single-machine multi-product lot scheduling problem. Management Science, Vol. 22, nº. 8, pp. 909-912. http://dx.doi.org/10.1287/mnsc.22.8.909

Hahm, J.; Yano, C. A. (1995). The Economic Lot and Delivery Scheduling Problem - Powers of 2 Policies. Transportation Science, Vol. 29, nº. 3, pp. 222-241. http://dx.doi.org/10.1287/trsc.29.3.222

Hanssmann, F. (1962). Operations-Research in Production and Inventory Control. J. Wiley.

Harris, F. W. (1913). How many parts to make an once. Factory, The Magazine of Management, Vol. 10, nº. 2, pp. 135-6-152.

Hsu, W. L. (1983). On the General Feasibility Test of Scheduling Lot Sizes for Several Products on One Machine. Management Science, Vol. 29, nº. 1, pp. 93-105. http://dx.doi.org/10.1287/mnsc.29.1.93

Hwang, H.; Kim, D. B.; Kim, Y. D. (1993). Multiproduct Economic Lot Size Models with Investment Costs for Setup Reduction and Quality Improvement. International Journal of Production Research, Vol. 31, nº. 3, pp. 691-703. http://dx.doi.org/10.1080/00207549308956751

Jones, P. C.; Inman, R. R. (1989). When Is the Economic Lot Scheduling Problem Easy. IIE Transactions, Vol. 21, nº. 1, pp. 11-20. http://dx.doi.org/10.1080/07408178908966202

Khouja, M.; Michalewicz, Z.; Wilmot, M. (1998). The use of genetic algorithms to solve the economic lot size scheduling problem. European Journal of Operational Research, Vol. 110, nº. 3, pp. 509-524. http://dx.doi.org/10.1016/S0377-2217(97)00270-1

Khoury, B. N.; Abboud, N. E.; Tannous, M. M. (2001). The common cycle approach to the ELSP problem with insufficient capacity. International Journal of Production Economics, Vol. 73, nº. 2, pp. 189-199. http://dx.doi.org/10.1016/S0925-5273(00)00175-4

Larrañeta, J.; Onieva, L. (1988). The Economic Lot-Scheduling Problem - A Simple Approach. Journal of the Operational Research Society, Vol. 39, nº. 4, pp. 373-379. http://dx.doi.org/10.1057/jors.1988.65

Leachman, R. C.; Gascon, A. (1988). A Heuristic Scheduling Policy for Multi-Item, Single-Machine Production Systems with Time-Varying, Stochastic Demands. Management Science, Vol. 34, nº. 3, pp. 377-390. http://dx.doi.org/10.1287/mnsc.34.3.377

Madigan, J. G. (1968). Scheduling A Multi-Product Single Machine System for An Infinite Planning Period. Management Science, Vol. 14, nº. 11, pp. 713-719. http://dx.doi.org/10.1287/mnsc.14.11.713

Maxwell, W. L. (1964). Scheduling of Economic Lot Sizes. Naval Research Logistics Quarterly, Vol. 11, nº. 2-3, p. 89-&. http://dx.doi.org/10.1002/nav.3800110202

Moon, I.; Giri, B.; Choi, K. (2002a). Economic lot scheduling problem with imperfect production processes and setup times. Journal of the Operational Research Society, Vol. 53, nº. 6, pp. 620-629 http://dx.doi.org/10.1057/palgrave.jors.2601350

Moon, I.; Silver, E. A.; Choi, S. (2002b). Hybrid genetic algorithm for the economic lot-scheduling problem. International Journal of Production Research, Vol. 40, nº. 4, pp. 809-824. http://dx.doi.org/10.1080/00207540110095222

Moon, I. K.; Hahm, J. H.; Lee, C. (1998). The effect of the stabilization period on the economic lot scheduling problem. IIE Transactions, Vol. 30, nº. 11, pp. 1009-1017. http://dx.doi.org/10.1080/07408179808966557

Oner, S.; Bilgic, T. (2008). Economic lot scheduling with uncontrolled co-production. European Journal of Operational Research, Vol. 188, nº. 3, pp. 793-810. http://dx.doi.org/10.1016/j.ejor.2007.05.016

Schweitzer, P. J.; Silver, E. A. (1983). Mathematical Pitfalls in the One Machine Multiproduct Economic Lot Scheduling Problem. Operations Research, Vol. 31, nº. 2, pp. 401-405. http://dx.doi.org/10.1287/opre.31.2.401

Segerstedt, A. (1999). Lot sizes in a capacity constrained facility with available initial inventories. International Journal of Production Economics, Vol. 59, nº. 1-3, pp. 469-475. http://dx.doi.org/10.1016/S0925-5273(98)00111-X

Soman, C. A.; Pieter van Donk, D.; Gaalman, G. (2006). Comparison of dynamic scheduling policies for hybrid make-to-order and make-to-stock production systems with stochastic demand. International Journal of Production Economics, Vol. 104, nº. 2, pp. 441-453. http://dx.doi.org/10.1016/j.ijpe.2004.08.002

Soman, C. A.; van Donk, D. P.; Gaalman, G. (2004a). Combined make-to-order and make-to-stock in a food production system. International Journal of Production Economics, Vol. 90, nº. 2, pp. 223-235. http://dx.doi.org/10.1016/S0925-5273(02)00376-6

Soman, C. A., van Donk, D. P., & Gaalman, G. J. C. (2004b). Heuristics for multi-item,singlemachine scheduling problem with stochastic demand revisted.

Soman, C. A.; van Donk, D. P.; Gaalman, G. J. C. (2007). Capacitated planning and scheduling for combined make-to-order and make-to-stock production in the food industry: An illustrative case study. International Journal of Production Economics, Vol. 108, nº. 1-2, pp. 191-199. http://dx.doi.org/10.1016/j.ijpe.2006.12.042

Stankard, M. F.; Gupta, S. K. (1969). A note on Bomberger's approach to lot size scheduling: Heuristic proposed. Management Science Series A-Theory, Vol. 15, nº. 7, pp. 449-452.

Sun, H. N.; Huang, H. C.; Jaruphongsa, W. (2010). The economic lot scheduling problem under extended basic period and power-of-two policy. Optimization Letters, Vol. 4, nº. 2, pp. 157-172. http://dx.doi.org/10.1007/s11590-009-0154-5

Tunasar, C.; Rajgopal, J. (1996). An evolutionary computation approach to the economic lot scheduling problem Deparment of Industrial Engineering, University of Pittsburgh, Pittsburgh.

Vergin, R. C.; Lee, T. N. (1978). Scheduling Rules for Multiple Product Single Machine System with Stochastic Demand. Infor, Vol. 16, nº. 1, pp. 64-73.

Wilson, R. H. (1934). A scientific routine for stock control. Harvard Business Review, Vol. 13, nº. 1, pp. 116-128.

Yao, M. J. & Chang, Y. J. (2009). Solving the economic lot scheduling problem with multiple facilities in parallel using the time-varying lot sizes approach, in Eighth International Conference on Information and Management Sciences, p. F224.

Zipkin, P. H. (1991). Computing Optimal Lot Sizes in the Economic Lot Scheduling Problem. Operations Research, Vol. 39, nº. 1, pp. 56-63 http://dx.doi.org/10.1287/opre.39.1.56

Downloads

Published

2010-12-23

How to Cite

Vidal-Carreras, P. I. (2010). Enfoques para la Resolución del Problema ELSP. WPOM-Working Papers on Operations Management, 1(2), 31–43. https://doi.org/10.4995/wpom.v1i2.787

Issue

Section

Cápsulas de Conocimiento edited:JPG