Actual evapotranspiration estimation over flat lands using soil moisture products from SMAP mission

Authors

DOI:

https://doi.org/10.4995/raet.2018.10566

Keywords:

Evapotranspiration, soil moisture, SMAP, relative evapotranspiration

Abstract

Evapotranspiration (ET) is an important process in the water cycle and in the land-surface energy balance. Over the last decades, remote sensing has provided valuable information to quantify ET. However, methodologies that use data from microwave passive sensors, such as “Soil Moisture Active Passive” (SMAP) mission, have been recently developed. In this work, a formulation to derive the relative evapotranspiration and ET from in situ and microwave data, is presented. The methodology is based on a modification of the original Komatsu (2003) equation by introducing a calibration parameter to represent the wind speed and vegetation effects and estimate the relative evapotranspiration. This new equation was used on the Bouchet’s complementary relationship with the Priestley-Taylor’s equation, to estimate ET at regional scales. The results were compared with observed data in the Southern Great Plains – USA (SGP) area, indicating that the new model estimated ET with a root mean square error (RMSE) of 0.88 mmd–1 and a coefficient of determination (R2 ) greater than 0.8. The calibrated model was applied in an extremely humid period in Argentinean Pampas region with results near to potential rates.

Downloads

Download data is not yet available.

Author Biographies

E. Walker, Universidad Nacional del Litoral; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Facultad de Ingeniería y Ciencias Hídricas (FICH) - Centro de Estudios Hidro-Ambientales (CENEHA)

G.A. García, Universidad Nacional del Litoral (UNL)

Facultad de Ingeniería y Ciencias Hídricas (FICH) - Centro de Estudios Hidro-Ambientales (CENEHA)

V. Venturini, Universidad Nacional del Litoral

Facultad de Ingeniería y Ciencias Hídricas (FICH) - Centro de Estudios Hidro-Ambientales (CENEHA)

References

Autovino, D., Minacapilli, M., Provenzano, G. 2016. Modelling bulk surface resistance by MODIS data and assessment of MOD16A2 evapotranspiration product in an irrigation district of Southern Italy. Agricultural Water Management, 167, 86-94. https://doi.org/10.1016/j.agwat.2016.01.006

Barraza, V., Restrepo-Coupe, N., Huete, A., Grings, F., Van Gorsel, E. 2015. Passive microwave and optical index approaches for estimating surface conductance and evapotranspiration in forest ecosystems. Agricultural and Forest Meteorology, 213, 126-137. https://doi.org/10.1016/j.agrformet.2015.06.020

Bastiaanssen, W.G.M., Meneti, M., Feddes, R.A., Holtslag, A.A.M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology, 212, 19-212. https://doi.org/10.1016/S0022-1694(98)00253-4

Bedano, J.C., Domínguez, A., Arolfo, R., Wall, L.G. 2016. Effect of Good Agricultural Practices under no-till on litter and soil invertebrates in areas with different soil types. Soil and Tillage Research, 158, 100-109. https://doi.org/10.1016/j.still.2015.12.005

Bouchet, R.J. 1963. Évapotranspiration Réelle Et Potentielle Signification Climatique. International Association of Science and Hydrology, 62, 134-162.

Carlson, T.N., Capehart, W.J., Gillies, R.R. 1995. A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sensing of Environment, 54, 161-167. https://doi.org/10.1016/0034-4257(95)00139-R

Carmona, F., Rivas, R. 2011. Estimación de la evapotranspiración real mediante datos meteorológicos e imágenes de satélite. Teledetección: Recientes aplicaciones en la región pampeana. Buenos Aires, Argentina.

Carmona, F., Holzman, M., Rivas, R., Degano, M.F., Kruse, E., Bayala, M. 2018. Evaluación de dos modelos para la estimación de la evapotranspiración de referencia con datos CERES. Revista de Teledetección, 51, 87-98. https://doi.org/10.4995/raet.2018.9259

Chang, D., Kothari, R., Member, S., Islam, S. 2003. Classification of Soil texture using remotely sensed Brightness temperature over the Southern Great Plains. IEEE transactions on Geoscience and Remote Sensing, 41(3), 664-674. https://doi.org/10.1109/TGRS.2003.809935

Cosby, B.J., Hornberger, G.M., Clapp, R.B., Ginn, T.R. 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resources Research, 20, 682-690. https://doi.org/10.1029/WR020i006p00682

Detto, M., Montaldo, N., Albertson, J.D., Mancini, M., Katul, G. 2006. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resources Research, 42, 1-16. https://doi.org/10.1029/2005WR004693

Entekhabi, D., Yueh, S., O’Neill, P.E., Kellog, K.H., Allen, A., Bindlish, R., Das, N., et al. 2014. SMAP Handbook-Soil Moisture Active Passive: mapping Soil Moisture and Freeze/Thaw from space. National Aeronautic Space Administration.

Girolimetto, D., Venturini, V. 2013. Estimación de la evapotranspiración utilizando bandas del infrarrojo medio. Revista de Teledetección, 40, 41-50.

Hu, G., Jia, L. 2015. Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin by combining Microwave and Optical Remote Sensing Observations. Remote Sensing, 7, 3056-3087. https://doi.org/10.3390/rs70303056

Hu, G.C., Jia, L., Menenti, M. 2015. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sensing of Environment 156, 510-526. https://doi.org/10.1016/j.rse.2014.10.017

INTA. 1978. Carta de suelos de la República Argentina. Hoja 3363-17. Marcos Juárez. 29-30.

Jiang, L., Islam, S. 2001. Estimation of surface evaporation map over Southern Great Plains using remote sensing data. Water Resources Research, 37(2), 329-340. https://doi.org/10.1029/2000WR900255

Knipper, K., Hogue, T., Scott, R., Franz, K. 2017. Evapotranspiration estimates derived using multi-platform remote sensing in a semiarid region. Remote Sensing, 9(3), 184. https://doi.org/10.3390/rs9030184

Komatsu, T.S. 2003. Toward a robust phenomenological expression of evaporation efficiency for unsaturated soil surfaces. Journal of Applied Meteorology, 42(9), 1330-1334. https://doi.org/10.1175/1520- 0450(2003)042%3C1330:TARPEO%3E2.0.CO;2

Li, Y., Zhou, J., Wang, H., Li, D., Jin, R., Zhou, Y., Zhou, Q. 2015. Integrating soil moisture retrieved from L-band microwave radiation into an energy balance model to improve evapotranspiration estimation on the irrigated oases of arid regions in northwest China. Agricultural and Forest Meteorology, 214-215, 306-318. https://doi.org/10.1016/j.agrformet.2015.08.260

Ma, W., Hafeez, M., Rabbani, U., Ishikawa, H., Ma, Y. 2012. Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia. Atmospheric Environment Journal, 59, 408-414. https://doi.org/10.1016/j.atmosenv.2012.05.040

Marini, F., Santamaría, M., Oricchio, P., Di Bella, C.M., Bausaldo, A. 2017. Estimación de la evapotranspiración real (ETR) y de evapotranspiración potencial (ETP) en el sudoeste bonaerense (Argentina) a partir de imágenes MODIS. Revista de Teledetección, 48, 29-41. https://doi.org/10.4995/raet.2017.6743

Minicapilli, M., Consoli, S., Vanella, D., Ciraolo, G., Motisi, A. 2016. A time domain triangle method approach to estimate actual evapotranspiration: Application in a Mediterranean region using MODIS and MSG-SEVIRI products. Remote Sensing of Environment, 174, 10-23. https://doi.org/10.1016/j.rse.2015.12.018

Priestley, CH.B., Taylor, R.J. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81-92. https://doi.org/10.1175/1520-0493(1972)100%3C0 081:OTAOSH%3E2.3.CO;2

Ramoelo, A., Majozi, N., Mathieu, R., Jovanovic, N., Nickless, A., Dzikiti, S. 2014. Validation of Global Evapotranspiration Product (MOD16) using Flux Tower Data in the African Savanna. South Africa, Remote Sensing, 6(8), 7406-7423. https://doi.org/10.3390/rs6087406

Su, Z. 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6, 85-99. https://doi.org/10.5194/hess-6-85-2002

Tang, R.L., Li, Z.L., Tang, B.H. 2010. An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semiarid regions: Implementation and validation. Remote Sensing of Environment, 114, 540-551. https://doi.org/10.1016/j.rse.2009.10.012

Thibeault, M., Cáceres, J., Dadamia, D., Soldano, A.,Uriburu Quirno, M., Guerrieri, J., Edrosa, R., Palomeque, M., Romaldi, L., Pucheta, J., Mogadouro, J., De Luca, E., Bustos, S., Aguero, S., Pascual, I., Mariotti, M. 2015. Spatial and temporal analysis of the monte buey saocom and smap core site. In IGARSS 2015, 969-971. https://doi.org/10.1109/IGARSS.2015.7325929

Venturini, V., Islam, S., Rodríguez, L. 2008. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model. Remote Sensing of Environment, 112, 132- 141. https://doi.org/10.1016/j.rse.2007.04.014

Wang, K.C., Liang, S.L. 2008. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature and soil moisture. Journal of Hydrometeorology, 9, 712-727. https://doi.org/10.1175/2007JHM911.1

Willmott, C. J. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309-1313. https:// doi.org/10.1175/1520-0477(1982)063%3C1309:SC OTEO%3E2.0.CO;2

Zhu, W., Jia, S., Lv, A. 2017. A universal Ts-VI triangle method for the continuous retrieval of evaporative fraction from MODIS products. Journal of Geophysical Research: Atmospheres, 122, 10206- 10227. https://doi.org/10.1002/2017JD026964

Published

2018-12-26

Issue

Section

Research articles