AmazonCRIME: a Geospatial Artificial Intelligence dataset and benchmark for the classification of potential areas linked to Transnational Environmental Crimes in the Amazon Rainforest

Authors

  • Jairo J. Pinto-Hidalgo Universidade Federal do Paraná
  • Jorge A. Silva-Centeno Universidade Federal do Paraná

DOI:

https://doi.org/10.4995/raet.2022.15710

Keywords:

Transnational Environmental Crimes, Amazon rainforest, Sentinel-2, Geospatial Intelligence, Geospatial Artificial Intelligence

Abstract

In this article the challenge of detecting areas linked to transnational environmental crimes in the Amazon rainforest is addressed using Geospatial Intelligence data, open access Sentinel-2 imagery provided by the Copernicus programme, as well as the cloud processing capabilities of the Google Earth Engine platform. For this, a dataset consisting of 6 classes with a total of 30,000 labelled and geo-referenced 13-band multispectral images was generated, which is used to feed advanced Geospatial Artificial Intelligence models (deep convolutional neural networks) specialised in image classification tasks. With the dataset presented in this paper it is possible to obtain a classification overall accuracy of 96.56%. It is also demonstrated how the results obtained can be used in real applications to support decision making aimed at preventing Transnational Environmental Crimes in the Amazon rainforest. The AmazonCRIME Dataset is made publicly available in the repository: https://github.com/jp-geoAI/AmazonCRIME.git.

Downloads

Download data is not yet available.

Author Biographies

Jairo J. Pinto-Hidalgo, Universidade Federal do Paraná

Alumno de Doctorado / Investigador del Programa de posgraduación em Ciencias Geodésicas

Jorge A. Silva-Centeno, Universidade Federal do Paraná

Profesor / Investigador del Programa de posgraduación em Ciencias Geodésicas

References

Abdani, S.R., & Zulkifley, M.A. 2019. Densenet with spatial pyramid pooling for industrial oil palm plantation detection. In 2019 International Conference on Mechatronics, Robotics and Systems Engineering. 134-138. https://doi.org/10.1109/MoRSE48060.2019.8998735

Basu, S., Ganguly, S., Mukhopadhyay, S., DiBiano, R., Karki, M., & Nemani, R. 2015. DeepSat - A Learning framework for Satellite Imagery. Association for Computing Machinery, 37, 1–10. https://doi. org/10.1145/2820783.2820816

Bingham, H., Bignoli, D., Lewis, E., MacSharry, B., Burgess, N., Visconti, P., Kingston, N. 2019. Sixty years of tracking conservation progress using the World Database on Protected Areas. Nature Ecology & Evolution, 3, 737–743. https://doi.org/10.1038/s41559-019-0869-3

Boguszewski, A., Batorski, D., Jankowska, N., Zambrzycka, A., & Dziedzic, T. 2020. LandCover. ai: Dataset for Automatic Mapping of Buildings, Woodlands and Water from Aerial Imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1102-1110. https://doi.org/10.1109/CVPRW53098.2021.00121

CAF (Banco de Desarrollo de América Latina). 2019. La riqueza natural de la Amazonía como base del desarrollo sostenible regional. Último acceso: 01 de Noviembre, 2021, de https://www.caf.com/es/ conocimiento/visiones/2019/09/la-riqueza-natural-de-la-amazonia-como-base-del-desarrollo-sostenible-regional/.

Camps-Valls, G., Tuia, D., Zhu, X.X., & Reichstein, M. (Eds.). 2021. Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences. John Wiley & Sons.

https://doi.org/10.1002/9781119646181

Cheng, G., Han, J., & Lu, X. 2017. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proceedings of the IEEE, 105(10), 1865-1883. https://doi.org/10.1109/JPROC.2017.2675998

Chiu, M.T., Xu, X., Wei, Y., Huang, Z., Schwing, A. G., Brunner, R.,... & Shi, H. 2020. Agriculture- vision: A large aerial image database for agricultural pattern analysis. In Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition, 2828-2838. https://doi.org/10.1109/CVPR42600.2020.00290

Clark, R. 2020. Geospatial Intelligence. Origins and Evolution. Washington, DC: Geogertown University Press.

Coorey, R. 2018. The Evolution of Geospatial Intelligence. Australian Contributions to Strategic and Military Geography. Advances in Military Geosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-73408-8_10

Coorey, R. 2018. The Evolution of Geospatial Intelligence. Australian Contributions to Strategic and Military Geography. Advances in Military Geosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-73408-8_10

Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S.,... & Raskar, R. 2018. Deepglobe 2018: A challenge to parse the earth through satellite images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 172-181. https://doi.org/10.1109/CVPRW.2018.00031

ESA (European Space Agency) 2015. Sentinel -2 User Handbook. ESA Standard Document.

European Commission. 2015. Copernicus. Europe’s eyes on Earth. Brussels: Publications Office of the European Union.

EUROPOL (European Union Agency for Law Enforcement Cooperation). 2011. EU Organised Crime Threat Assessment. OCTA 2011. EUROPOL Public Information.

Exército Brasileiro. 2018. Operação Curare IX - Interdição de pista de pouso clandestina. Último acceso: 16 de Febrero, 2021, de http://www.eb.mil.br/web/noticias/noticiario-do-exercito/-/asset_publisher/ MjaG93KcunQI/content/no-contexto-da-operacao-curare-ix-1-brigada-infantaria-de-selva-realiza-interdicao-de-pista-de-pouso-clandestina-/8357041.

GEE (Google Earth Engine). Sentinel-2. Último acceso 05/11/2021, de https://developers.google.com/earth- engine/datasets/catalog/sentinel-2.

Global Initiative Against Transnational Organized Crime. 2016. Organized Crime and Illegally Mined Gold in Latin America. https://globalinitiative.net/analysis/organized-crime-and-illegally-mined-gold-in-latin-america

Global Initiative Against Transnational Organized Crime. 2021. Environmental crime: The not-so-hidden obstacle to combat climate change. Último acceso: 01 de Noviembre, 2021, de https://globalinitiative.net/analysis/environmental-crime-climate-change/.

Gore, M.L., Braszak, P., Brown, J., Cassey, P., Duffy, R., Fisher, J.,... & White, R. 2019. Transnational environmental crime threatens sustainable development. Nature Sustainability, 2(9), 784-786. https://doi.org/10.1038/s41893-019-0363-6

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031

Helber, P., Bischke, B., Dengel, A., & Borth, D. 2019. Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2217-2226. https://doi.org/10.1109/JSTARS.2019.2918242

Hoeser, T., & Kuenzer, C. 2020. Object detection and image segmentation with deep learning on earth observation data: A review-part i: Evolution and recent trends. Remote Sensing, 12(10), 1667. https://doi.org/10.3390/rs12101667

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K.Q. 2017. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4700-4708. https://doi.org/10.1109/CVPR.2017.243

ICMBio. 2016. Plano de Manejo Floresta Nacional do Amana. Último acceso: 10 de Marzo, 2021, de https:// www.icmbio.gov.br/portal/unidadesdeconservacao/biomas-brasileiros/amazonia/unidades-de-conservacao-amazonia/1955-flona-do-amana.

INPE (Instituto Nacional de Pesquisas Espaciais). 2020. TerraBrasilis. Último acceso: 11 de Enero, 2021, de http://terrabrasilis.dpi.inpe.br/en/home-page/.

Insight Crime. 2020. Narcovuelos y pistas clandestinas en al menos seis estados de Venezuela. Último acceso:

de Enero, 2021, de https://es.insightcrime.org/noticias/noticias-del-dia/narcovuelos-seis-estados-venezuela/.

INTERPOL (International Criminal Police Organization). 2018. World atlas of illicit flows. Último acceso: 01 de Noviembre, 2021, de https://globalinitiative.net/wp-content/uploads/2018/09/Atlas-Illicit-Flows-FINAL-WEB-VERSION-copia-compressed.pdf.

Janowicz, K., Gao, S., McKenzie, G., Hu, Y., & Bhaduri, B. 2020. GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), 625-636.https://doi.org/10.1080/13658816.2019.1684500

Khan, M.A., Hussain, N., Majid, A., Alhaisoni, M., Syed Ahmad Chan, B., Kadry, S., Yu-Dong, Z. 2021. Classification of positive COVID-19 CT scans using deep learning. Computers, Materials, & Continua, 66(3), 2923-2938. https://doi.org/10.32604/cmc.2021.013191

Koh, J. C., Spangenberg, G., & Kant, S. 2021. Automated Machine Learning for High-Throughput Image- Based Plant Phenotyping. Remote Sensing, 13(5), 858. https://doi.org/10.3390/rs13050858

Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. 2017. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778- 782. https://doi.org/10.1109/LGRS.2017.2681128

LeCun, Y., Bengio, Y., & Hinton, G. 2015. Deep learning. nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539

Letitia, A. 2013. Activity based intelligence: Understanding the unknown. The intelligencer: Journal of US intelligence studies, 20(2), 7-16.

López-Jiménez, E., Vasquez-Gomez, J. I., Sanchez- Acevedo, M. A., Herrera-Lozada, J. C., & Uriarte- Arcia, A. V. 2019. Columnar cactus recognition in aerial images using a deep learning approach. Ecological Informatics, 52, 131-138. https://doi.org/10.1016/j.ecoinf.2019.05.005

Lowenthal, M.2020. Intelligence. From secrets to policy. CQ. Press.

Lycia, B., Abdenur, A., Pellegrino, A., Porto, C., & Brasil, L. 2019. Los delitos Ambientales en la Cuenca del Amazonas: el rol del crimen organizado en la minería. El Pacto. Europa Latinoamerica. Programa de Asistencia contra el Crimen Transnacional Organziado. Último acceso: 11 de Mayo, 2020, de https://www.elpaccto.eu/wp-content/uploads/2019/05/Los-Delitos-Ambientales-en-la-Cuenca-del-Amazonas-comprimido.pdf.

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. 2019. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166-177. https://doi.org/10.1016/j.isprsjprs.2019.04.015

MinAmbiente. Parques Nacionales Naturales de Colombia. 1978. Plan de Manejo del Parque Nacional Natural La Paya. Último acceso: 10 de Marzo, 2021, de https://www.parquesnacionales.gov.co/portal/wp-content/uploads/2020/10/plan-de-manejo-pnn-la-paya.pdf.

Ministerio de Defensa. 2020. Medio Ambiente. Defensa. Último acceso: 10 de Marzo, 2021, de

https://www.mindefensa.gov.co/irj/go/km/docs/Mindefensa/Documentos/descargas/Documentos_Descargables/espanol/Medio%20Ambiente.pdf.

Nogueira, K., Dos Santos, J.A., Fornazari, T., Silva, T.S.F., Morellato, L.P., & Torres, R.D.S. 2016. Towards vegetation species discrimination by using data-driven descriptors. In 2016 9th IAPR Workshop on Pattern Recogniton in Remote Sensing (PRRS) (pp. 1-6). IEEE. https://doi.org/10.1109/PRRS.2016.7867024

OEA (Organización de los Estados Americanos). 2007. Yapacana National Park. BioParques: Parkswatch Program. Último acceso: 10 de Marzo, 2021, de https://www.oas.org/dsd/AAPAD2/Docs/(iii)%20 Yapacana%20NP%20Special%20Report%20(Venezuela).pdf.

Oliveira, D. 2018. Atividade garimpeira na região do Tapajós (PA): o caso na Flona do Amana. Monografia, Instituto CEUB de Pesquisa e Desenvolvimento, Centro Universitário de Brasília). https://repositorio.uniceub.br/jspui/handle/235/11514.

openAIP. 2021. Worldwide aviation database. Último acceso: 5 de Enero, 2021, de http://www.openaip.net/.

Penatti, O.A., Nogueira, K., & Dos Santos, J.A. 2015. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 44-51. https://doi.org/10.1109/CVPRW.2015.7301382

Pennsylvania State University. 2020. GEOINT MOOC. Último acceso 05/11/2021, de https://www.e-ducation.psu.edu/geointmooc/node/1989.

Planet Labs. 2017. Planet: Understanding the Amazon from Space. Último acceso: 08 de Enero, 2021, de https://www.kaggle.com/c/planet-understanding-the-amazon-from-space.

QGIS Development Team. QGIS. A Free and Open Source Geographic Information System. Último acceso: 08 de Enero, 2021, de https://qgis.org/en/site/.

RAISG (Red Amazónica de Información Socioambiental Georreferenciada). 2012. Amazonía Bajo Presión. Último acceso: 14 de Enero, 2021, de www.raisg.socioambiental.org.

RAISG (Red Amazónica de Información Socioambiental Georreferenciada). 2018a. Amazonía saqueada: el primer mapa de minería ilegal en el pulmón del mundo. 2018. Último acceso: 14 de Enero, 2021, de https://www.amazoniasocioambiental.org/es/radar/mapa-inedito-indica-epidemia-de-garimpo-ilegal-na-panamazonia/.

RAISG (Red Amazónica de Información Socioambiental Georreferenciada). 2018b. Presiones y Amenazas. Último acceso: 14 de Enero, 2021, de https://www.amazoniasocioambiental.org/es/mapas/#!/presiones.

RAISG (Red Amazónica de Información Socioambiental Georreferenciada). 2019. ¡Imperdonable! Parque nacional en Amazonas es devastado por la minería ilegal que dirige el ELN. Último acceso: 14 de Enero, 2021, de https://www.amazoniasocioambiental.org/es/radar/imperdonable-parque-nacional-en-amazonas-es-devastado-por-la-mineria-ilegal-que-dirige-el-eln/.

RAISG (Red Amazónica de Información Socioambiental Georreferenciada). 2020a. Atlas Amazonía Bajo Presión 2020. Último acceso: 01 de Noviembre, 2021, de https://www.amazoniasocioambiental.org/es/publicacion/amazonia-bajo-presion-2020/.

RAISG (Red Amazónica de Información Socioambiental Georreferenciada). 2020b. Cartographic Data. Último acceso: 14 de Enero, 2021, de https://www.amazoniasocioambiental.org/en/maps/#download.

Republica Federativa do Brasil. 2005. LEI Nº 11.182, DE 27 DE SETEMBRO DE 2005. (Cria a Agência Nacional de Aviação Civil – ANAC) Último acceso: 20 de Febrero, 2021, de http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2005/Lei/L11182.htm.

Schmitt, M., & Wu, Y. L. 2021. Remote Sensing Image Classification with the SEN12MS Dataset. arXiv preprint arXiv:2104.00704.

Schmitt, M., Hughes, L., & Zhu, X. 2018. The SEN1-2 Dataset for Deep Learning in SAR-Optical Data Fusion. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-1, 141-146. https://doi.org/10.5194/isprs-annals-IV-1-141-2018

Schmitt, M., Hughes, L., Qiu, C., & Zhu, X. 2019. SEN12MS - A Curated Dataset of Georeferenced Multi-Spectral Sentinel-1/2 Imagery for Deep Learning and Data Fusion. SPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W7, 153-160. https://doi.org/10.5194/isprs-annals-IV-2-W7-153-2019

Souza, C., Shimbo, J., Rosa, M., Parente, L., Alencar, A., Rudorff, B., Azevedo, T. 2020. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sensing, 12(17), 2735. https://doi.org/10.3390/rs12172735

Sumbul, G., Charfuelan, M., Demir, B., & Markl,V. 2019. Bigearthnet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 5901-5904. https://doi.org/10.1109/IGARSS.2019.8900532

Tobler, W. R. 1970. A computer movie simulating urban growth in the Detroit region. Economic geography, 46(sup1), 234-240. https://doi.org/10.2307/143141

UNEP (United Nations Environment Programme). 2012. Transnational Environmental Crime - a common crime in need of better enforcement. Último acceso: 22 de Febrero, 2021, de https://wedocs.unep.org/rest/bitstreams/14319/retrieve.

UN-GGIM (United Nations Committee of Experts on Global Geospatial Information Management). 2020. Future Trends in geospatial information management: the five to ten year vision – Third Edition. Último acceso: 10 de Noviembre, 2021, de https://ggim.un.org/meetings/GGIM-committee/10th-Session/documents/Future_Trends_Report_THIRD_EDITION_digital_accessible.pdf.

UNHRC (United Nations Human Rights Council). 2020. Detailed findings of the independent international factfinding mission on the Bolivarian Republic of Venezuela. Agenda item 4. Human rights situations that require the Council’s attention. Último acceso: 20 de Septiembre, 2020, de https://www.ohchr.org/Documents/HRBodies/HRCouncil/FFMV/A_ HRC_45_CRP.11.pdf.

UNODC (United Nations Office on Drugs and Crime). 2012. Digest of Organized Crime Cases. A compilation of cases with commentaries and lessons learned. Último acceso: 4 de Febrero, 2021, de https://www.unodc.org/documents/organized-crime/EnglishDigest_Final301012_30102012.pdf.

UNODC (United Nations Office on Drugs and Crime). 2017a. Estado Plurinacional de Bolivia. Monitoreo de Cultivos de Coca 2016. La Paz. Último acceso: 20 de Agosto, 2020, de https://www.unodc.org/documents/crop-monitoring/Bolivia/2016_Bolivia_ Informe_Monitoreo_Coca.pdf.

UNODC (United Nations Office on Drugs and Crime). 2017b. Colombia. Monitoreo de territorios afectados por cultivos ilícitos 2016. Bogota. Último acceso: 20 de Agosto, 2020, de https://www.unodc.org/ documents/colombia/2017/julio/CENSO_2017_WEB_baja.pdf.

UNODC (United Nations Office on Drugs and Crime). 2017c. Peru. Monitoreo de Cultvivos de Coca 2016. Lima. Último acceso: 20 de Agosto, 2020, de https://www.unodc.org/documents/crop-monitoring/Peru/ Peru_Monitoreo_de_coca_2016_web.pdf.

UNODC (United Nations Office on Drugs and Crime). 2018. Peru. Monitoreo de Cultvivos de Coca 2017. Lima. Último acceso: 20 de Agosto, 2020, de https://www.unodc.org/documents/peruandecuador//Informes/monitoreo_coca/181213_InformeMonitoreo_2017Web.pdf.

UNODC (United Nations Office on Drugs and Crime). 2019a. Estado Plurinacional de Bolivia. Monitoreo de Cultivos de Coca 2018. La Paz. Último acceso: 20 de Agosto, 2020, de https://www.unodc.org/documents/crop-monitoring/Bolivia/Bolivia_ Informe_Monitoreo_Coca_2018_web.pdf.

UNODC (United Nations Office on Drugs and Crime). 2019b. Colombia. Monitoreo de territorios afectados por cultivos ilícitos 2018. Bogota. Último acceso: 20 de Agosto, 2020, de https://www.unodc.org/colombia/ es/informe-de-monitoreo-de-territorios-afectados-por-cultivos-ilicitos-en-Colombia-2018.html.

UNODC (United Nations Office on Drugs and Crime). 2019c. World Drug Report 2019. Último acceso: 19 de Mayo, 2020, de https://wdr.unodc.org/wdr2019/.

UNODC (United Nations Office on Drugs and Crime). 2021a. World Drug Report 2021. Último acceso: 01 de Noviembre, 2021, de https://wdr.unodc.org/.

UNODC (United Nations Office on Drugs and Crime). 2021b. UNODC and illicit crop monitoring. Último acceso: 10 de Febrero, 2021, de https://www.unodc.org/unodc/en/crop-monitoring/index.html.

UNODC (United Nations Office on Drugs and Crime). 2021c. Colombia. Monitoreo de territorios afectados por cultivos ilícitos 2020. Bogota. Último acceso: 11 de Noviembre, 2021, de https://www.unodc.org/documents/crop-monitoring/Colombia/Colombia_Monitoreo_de_territorios_afectados_por_cultivos_ilicitos_2020.pdf.

USGIF (United States Geospatial Intelligence Foundation). 2020. Geospatial Intelligence & AI/ ML Progress During a Pandemic. Último acceso 05/11/2021, de https://s3-us-east-2.amazonaws.com/trjmag/wp-media-folder-trajectory-magazine/wp-content/uploads/2020/11/Geospatial_Intelligence_and_AI-ML_Progress_During_a_Pandemic.pdf.

Vargas, R. 2020. Automating Land Cover Change Detection: A Deep Learning Based Approach to Map Deforested Areas. Tesis de Doctorado, (Instituto Nacional de Pesquisas Espaciais, São José dos Campos). http://mtc-m21c.sid.inpe.br/col/sid.inpe.br/mtc-m21c/2020/06.09.11.59/doc/publicacao.pdf.

VoPham, T., Hart, J., Laden, F., & Chiang, Y.-Y. 2018. Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology. Environ Health, 17(1), 1-6. https://doi.org/10.1186/s12940-018-0386-x

Warmerdam, F. 2008. The Geospatial Data Abstraction Library. Open Source Approaches in Spatial Data Handling. Advances in Geographic Information Science (págs. 87-104). Berlin: Springer. https://doi.org/10.1007/978-3-540-74831-1_5

White, R. 2011. Transnational Environmental Crime: Toward an eco-global criminology (1st ed.). Tylor & Francis.

Xia, G. S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J.,... & Zhang, L. 2018. DOTA: A Large- Scale Dataset for Object Detection in Aerial Images. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3974-3983. https://doi.org/10.1109/CVPR.2018.00418

Yang, Y., & Newsam, S. 2010. Bag-of-visual- words and spatial extensions for land-use classification. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, 270–279. https://doi.org/10.1145/1869790.1869829

Zabyelina, Y., & van Uhm, D. 2020. Illegal Mining: Organized Crime, Corruption and Ecocide in a Resource-Scarce World. https://doi.org/10.1007/978-3-030-46327-4

Zhang, L., Zhang, L., & Du, B. 2016. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geoscience and Remote Sensing Magazine, 4, 22-40. https://doi.org/10.1109/MGRS.2016.2540798

Zhao, J., Zhang, Z., Yao, Y., Datcu, M., Xiong, H., & Yu, W. 2020. OpenSARUrban: A Sentinel-1 SAR Image Dataset for Urban Interpretation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 187-203. https://doi.org/10.1109/JSTARS.2019.2954850

Zhu, X., Hu, J., Qiu, C., Shi, Y., Kang, J., Mou, L., Wang, Y. 2020. So2Sat LCZ42: A Benchmark Dataset for Global Local Climate Zones Classification. IEEE Geoscience and Remote Sensing Magazine. 1912.12171. https://doi.org/10.1109/MGRS.2020.2964708

Published

2022-01-31

Issue

Section

Research articles