Assessing fire severity in semi-arid environments: application in Donceles 2012 wildfire (SE Spain)

Authors

  • E. Gómez-Sánchez Consejería de Agricultura, Junta de Comunidades de Castilla la Mancha
  • J. de las Heras Universidad de Castilla-La Mancha
  • M. Lucas-Borja Universidad de Castilla-La Mancha
  • D. Moya Universidad de Castilla-La Mancha https://orcid.org/0000-0002-1909-1200

DOI:

https://doi.org/10.4995/raet.2017.7121

Keywords:

NBR, NDVI, fire severity, post-fire management

Abstract

Post-fire management should be based on a proper evaluation of fire damage (burn severity), mainly for Large Fires (>500 ha). Several methodologies have been developed based on remote sensing information validated with fieldwork. The most widespread techniques was the assessment of fire severity indices obtained from remote sensing. It allow a quick assessment of large areas at affordable costs, although the analysis of soil burn severity and the degree of agreement with the ground truth is not fully reliable. Our study case was the Donceles fire (summer 2012, Hellín, Albacete). The post-fire restoration planning, emergency actions, was based on cartographic information of burn severity. To optimize results in a short time and low budget, we applied methodologies in a similar way other similar fires in the Mediterranean peninsular area. We assessed burn severity by using spectral indices (NDVI, dNBR, RdNBR and RBR) and images from Landsat-7 (including banded) and Deimos-1. For each index, we developed both supervised and unsupervised classifications, using field data as training areas. The highest overall reliability values were found for dNBR (79%) and NBR (71%), obtaining low values with RdNBR. In all cases, the reliability was higher using the supervised classification, so using real-ground data to identify the categories of severity to be discriminated. We conclude the need to extend fire studies in our area to improve the reliability of the fire severity assessment obtained from spectral indexes, thus establishing a protocol of data collection and standard methodology of calculation adapted to the characteristics of the region.

Downloads

Download data is not yet available.

Author Biographies

E. Gómez-Sánchez, Consejería de Agricultura, Junta de Comunidades de Castilla la Mancha

Servicio de Montes y Espacios Naturales Protegidos. Servicios Periféricos Consejería de Agricultura en Albacete. Junta de Comunidades de Castilla la Mancha

J. de las Heras, Universidad de Castilla-La Mancha

Escuela Técnica Superior Ingenieros Agrónomos y Montes

M. Lucas-Borja, Universidad de Castilla-La Mancha

Escuela Técnica Superior Ingenieros Agrónomos y Montes

D. Moya, Universidad de Castilla-La Mancha

Escuela Técnica Superior Ingenieros Agrónomos y Montes

References

Adler-Golden, S. M., Matthew, M. W., Bernstein, L. S., Levine, R. Y., Berk, A., Richtsmeier, S. C., Acharya, P. K., Anderson, G. P., Felde, J. W., Gardner, J. A., Hoke, M. L., Jeong, L. S., Pukall, B., Ratkowski, A. J., Burke, H. K. 1999. Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN4. SPIE Proceedings on Imaging Spectrometry, 3753, 61-69. https://doi. org/10.1117/12.366315

Alloza, J. A., García, S., Gimeno, T., Baeza, M.J., Vallejo, V.R. 2014. Guía técnica para la gestión de montes quemados. Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente.

Cabrera, M., Pérez-Palazón, R., Atienza, A. 2012. Metodología para el diseño de inventario forestal con aplicación de herramienta informática para la redacción de planes técnicos de gestión de biomasa forestal en la Región de Murcia. Fecha último acceso 10/05/2017. http://www.murcianatural.carm.es/c/ document_library/get_file?uuid=b1256a97-89dd- 4e69-881b-f4b854e98e7a&groupId=14

Chavez, P.S. 1996. Image-based atmospheric corrections. Revisited and improved. Photogrammetric Engineering and Remote Sensing, 62, 1025-1036.

Chu, T., Guo, X. 2014. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review. Remote Sensing, 6(1), 470-520. https://doi. org/10.3390/rs6010470

Chuvieco, E., 1999. Remote Sensing of Large Wildfires in the European Mediterranean Basin. New York: Springer. https://doi.org/10.1007/978-3-642-60164-4

Chuvieco, E., Riaño, D., Danson, F.M., Martin, P. 2006. Use of a radiative transfer model to simulate the postfire spectral response to burn severity. Journal of. Geophysical Research, 111, G04S09. https://doi. org/10.1029/2005JG000143

Chuvieco, E. 2009. Earth Observation of Wildland Fires in Mediterranean Ecosystems. Dordrecth: Springer. https://doi.org/10.1007/978-3-642-01754-4

Chuvieco, E. 2010. Teledetección ambiental: La observación de la Tierra desde el espacio. Barcelona, España: Ariel, 3ª edición.

De Santis, A., Chuvieco, E. 2009. GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sensing of Environment, 113(3), 554-562. https://doi. org/10.1016/j.rse.2008.10.011

Díaz-Delgado, R., Pons, X. 1999. Empleo de imágenes de teledetección para el análisis de los niveles de severidad causados por el fuego. Revista de Teledetección, 12, 63-68. Último acceso: noviembre de 2017. http://www.aet.org.es/revistas/revista12/ AET12_11.pdf

Doblas-Miranda, E., Martínez-Vilalta, J., Lloret, F., Álvarez, A., Ávila, A., Bonet, F. J., Brotons, L., Castro, J., Curiel Yuste, J., Díaz, M., Ferrandis, P., García-Hurtado, E., Iriondo, J. M., Keenan, T. F., Latron, J., Llusià, J., Loepfe, L., Mayol, M., Moré, G., Moya, D., Peñuelas, J., Pons, X., Poyatos, R., Sardans, J., Sus, O., Vallejo, V. R., Vayreda, J., Retana, J. 2015. Reassessing global change research priorities in mediterranean terrestrial ecosystems: how far have we come and where do we go from here? Global Ecology and Biogeography, 24(1), 25- 43. https://doi.org/10.1111/geb.12224

Escuin, S., Navarro, R., Fernández, P. 2008. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal Remote Sensing 29, 1053- 1073. https://doi.org/10.1080/01431160701281072

Ferriol, M., Merle, H. B. 2012. El Inventario Fitosociológico. Valencia: Editorial Universitat Politècnica de València. Fecha último acceso 10/05/2017. http://hdl.handle.net/10251/16818

Fontúrbel, M. T., Fernández, C., Vega, J. A. 2015. Cambios en la repelencia al agua del suelo en función de la severidad del fuego en el suelo. Flamma, 6(3), 122-124

González De Vega, S., de las Heras, J., Gómez-Sánchez, E., Moya, D. 2015. Response of plant communities in the short-term after fire: influence of fire severity and resilience. Flamma, 6(3), 149-153.

González-De Vega, S., de las Heras, J., Moya, D. 2016. Resilience of Mediterranean terrestrial ecosystems and fire severity in semiarid areas: responses of Aleppo pine forests in the short, mid and long term. Science Total Environment, 573, 1171-1177. https:// doi.org/10.1016/j.scitotenv.2016.03.115

Hedo, J., Rubio, E., Dadi, T., López-Serrano, F. R., Alfaro-Sánchez, R., Moya, D., De las Heras, J. 2014. Is Remote Sensing a Good Method to Define Forest Fire Resilience? A Particular Case in the South-eastern of the Iberian Peninsula. Coimbra: Universidade de Coimbra. https://doi. org/10.14195/978-989-26-0884-6_63

Keeley. J.E. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 116– 126. https://doi.org/10.1071/WF07049

Key, C. H., Benson, N. C. 2005. Landscape assessment: Remote sensing of severity, the Normalized Burn Ratio. In D. C. Lutes (Ed.), FIREMON: Fire effects monitoring and inventory system. General Technical Report, RMRSGTR-164-CD:LA1-LA51. Ogden, UT: USDA Forest Service, Rocky Mountain Research Station.

Llovería, R. M., Cabello, F. P., Martín, A. G., Vlassova, L., de la Riva Fernández, J. R. 2014. La severidad del fuego: revisión de conceptos, métodos y efectos ambientales. In Geoecología, cambio ambiental y paisaje: homenaje al profesor José María García Ruiz, 427-440. Instituto Pirenaico de Ecología.

Ludwig, J. A., Bastin, G. N., Wallace, J. F., McVicar, T. R. 2007. Assessing landscape health by scalingwith remote sensing: when is it not enough? Landscape Ecology, 22, 163–169. https://doi.org/10.1007/ s10980-006-9038-6

Malak, D. A., Pausas, J. G., Pardo-Pascual, J. E., Ruiz, L. A. 2015. Fire Recurrence and the Dynamics of the Enhanced Vegetation Index in a Mediterranean Ecosystem. International Journal of Applied Geospatial Research, 6(2), 18-35. https://doi. org/10.4018/ijagr.2015040102

MAPAMA, Ministerio de Agricultura, Pesca, Alimentacion y Medio Ambiente. 2016. Fecha último acceso 03/01/2017 http://www. mapama.gob.es/es/desarrollo-rural/estadisticas/ incendiosforestales2001-2010finalmod1_tcm7- 349255.pdf

Miller, J. D., Thode, A. E. 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment, 109, 66-80. https:// doi.org/10.1016/j.rse.2006.12.006

Moya, D., Alfaro-Sánchez, R., López-Serrano, F. R., Dadi, T., Hernández-Tecles E., Ferrandis, P., de las Heras, J. 2014. Post-fire management of mediterranean forests: carbon storage in regenerated areas in eastern Iberian Peninsula. Cuadernos de Investigación Geográfica, 40(2), 371-386. https:// doi.org/10.18172/cig.2565

Moya, D., De las Heras, J., Lopez-Serrano, F. R., Condes, S., Alberdi, I. 2009. Structural patterns and biodiversity in burned and managed Aleppo pine stands. Plant Ecology, 200, 217–228. https://doi. org/10.1007/s11258-008-9446-6

Paula, S., Arianoutsou, M., Kazanis, D., Tavsanoglu, Ç., Lloret, F., Buhk, C., Ojeda, F., Luna, B., Moreno, J. M., Rodrigo, A., Espelta, J. M., Palacio, S., Fernández-Santos, B., Fernandes, P. M., Pausas, J. G. 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology, 90, 1420. https://doi. org/10.1890/08-1309.1

Parks, S., Dillon, G., Miller, C. 2014. A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio. Remote Sensing, 6(3), 1827–1844. https://doi. org/10.3390/rs6031827

Pausas, J. G. 1999. Mediterranean vegetation dynamics: modelling problems and functional types. Plant Ecology, 140, 27–39. https://doi. org/10.1023/A:1009752403216

Regueira, N., Benito, E., Fontúrbel, M. T., Fernández, C., Jiménez, E., Vega, J. A. 2015. Efectos de quemas experimentales de diferente severidad en el carbono orgánico y en propiedades físicas del suelo. Flamma, 6(3), 129-133.

Ryan, K., Noste, N. 1985. Evaluating prescribed fires, pp. 230 238 (tech. coor) In: Lotan, J.E., et al. (Eds.), Proceedings Symposium and Workshop on Wilderness Fire. USDA Forest Service Intermountain Forest and Range Experiment Station, General Technical Report INT 182.

Sánchez, J. M., Rubio, E., López-Serrano, F. R., Artigao, M. M., Caselles, V., Moya, D., Odi, M. M. 2009. Estudio a través de imágenes Landsat 5-TM del efecto de un incendio sobre el balance de energía en superficie en una zona de bosque mediterráneo. Revista de Teledetección, 32, 72-85. Último acceso: noviembre 2017. http://www.aet.org.es/revistas/ revista32/Numero32_6.pdf

San-Miguel-Ayanz, J., Camia, A. 2009. Forest fires at a glance: facts, figures and trends in the EU. In: Birot, Yves (Ed.), Living with Wildfires: What Science Can Tell Us. A Contribution to the Sciencepolicy Dialogue. Joensuu, Finland: European Forest Institute, 11–18.

Soil Survey Staff, 2014. Keys to Soil Taxonomy. 12th ed. USDA-Natural Resources Conservation Service, Washington, DC. Último accesso: 03/01/2017. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ survey/class/taxonomy/?cid=nrcs142p2_053580

Soverel, N. O., Perrakis, D. B., Coops, N. C. 2010. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sensing of Environment, 114(9), 1896–1909. https:// doi.org/10.1016/j.rse.2010.03.013

Spano, D., Camia, A., Bacciu, V., Masala, F., Duguy, B., Trigo, R., Sousa, P., Venäläinen, A., Mouillot, F., Curt, T., Moreno, J. M., Zavala, G., Urbieta, I. R., Koutsias, N., Xystrakis, F. 2014. Recent trends in forest fires in Mediterranean areas and associated changes in fire regimes. In: Moreno, J. M., Arianoutsou, M., González-Cabán, A., Mouillot, F., Oechel, W. C., Spano, D., Thonicke, K., Vallejo, V. R., Vélez, R. (Eds.), Forest Fires Under Climate, Social and Economic Changes in Europe, the Mediterranean and other Fire-affected Areas of the World. FUME. Lesson Learned and Outlook. 6–7.

Tessler, N., Wittenberg, L., Provizor, E., Greenbaum, N. 2014.The influence of short interval recurrent forest fires on the abundance of Aleppo pine (Pinus halepensis Mill.) on Mount Carmel, Israel. Forest Ecology Management, 324, 109–116. https://doi. org/10.1016/j.foreco.2014.02.014

Tou, J. T., Gonzalez, R. C. 1974. Pattern Recognition Principles. Reading, Massachusetts: AddisonWesley Publishing Company.

USGS. 2014. Earth Explorer. Último acceso: 04/01/2017. http://earthexplorer.usgs.gov

Richards, J .A. 1999. Remote Sensing Digital Image Analysis, Berlin: Springer-Verlag, p. 240. https://doi. org/10.1007/978-3-662-03978-6

Rivas-Martínez, S. 1982. Estage bioclimatiques, secteurs chorologiques et série de vegetation de l’Espagne méditerranéenne. Ecología Mediterranea 8, 275–288.

Rodríguez Ramos, N., Galano Duverger, S., Belloch García, I., Estrada, R., Martín Morales, G. 2009. Rellenado de los gaps provocados por la falla del Scan Line Corrector en las imágenes Landsat 7 ETM+. Universidad de La Habana. 49 pp.

Ruiz-Gallardo, J. R., Castaño, S., Calera, A. 2004. Application of remote sensing and GIS to locate priority intervention areas after wildland fires in Mediterranean systems: a case study from southeastern Spain. International Journal of Wildland Fire, 13(3), 241-252. https://doi.org/10.1071/ WF02057

Ruiz-Gallardo, J. R. 2007. Teledetección y GIS en la asistencia de la actuación forestal post-incendio. Tesis doctoral. Universidad de Castilla la Mancha. Último acceso: noviembre de 2017. http://hdl. handle.net/10578/968

Vallejo, V. R., Arianoutsou, M., Moreira, F. 2012. Fire ecology and post-fire Restoration approaches in southern European forest types. In: Moreira, F., Arianoutsou, M., Corona,P., De Las Heras, J. (Eds.), Post-fire Management and Restoration of Southern European Forests, 93–119. Netherlands: Springer. https://doi.org/10.1007/978-94-007-2208-8_5

Vega, J. A., Fontúrbel, T., Fernández, C., Díaz-Raviña, M., Carballas, T., Martín, A., González-Prieto, S., Merino, A., Benito, E. 2013. Acciones urgentes contra la erosión en áreas forestales quemadas. Guía para su planificación en Galicia. Santiago de Compostela: Centro de Investigación Forestal de Lourizán, Consellería do Medio Rural e do Mar, Xunta de Galícia, Instituto de Investigaciones Agrobiológicas de Galicia del CSIC (IIAGCSIC), Universidad de Santiago de Compostela, Universidad de Vigo, FUEGORED.

Viera, A. J., Garrett, J. M. 2005. Understanding interobserver agreement: The kappa statistic. Family Medicine, 37(5), 360–363.

Vlassova, L., Pérez-Cabello, F., Mimbrero, M. R., Llovería, R. M., García-Martín, A. 2014. Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images. Remote Sensing, 6, 6136-6162. https://doi. org/10.3390/rs6076136

Published

2017-12-05