Parametric approach to the reconstruction of timber structures in Campanian Roman houses

Authors

DOI:

https://doi.org/10.4995/var.2022.15319

Keywords:

timber structures, reconstruction, parametric modelling, Roman house, Pompeii, Sarno Baths

Abstract

The virtual reconstruction of ancient architecture aims at describing the ‘original’ elevation and volume of a disappeared building. The feeble archaeological traces, often limited to their foundations, left by houses impair the reinstating of their image, in contrast to that which is made possible by the massive structures of public buildings. A twofold problem arises when dealing with timber structures during a reconstruction procedure: at the local scale of the individual beam (e.g. joists or rafters), one must define a beam’s cross-section given its span; at the overall scale, the shape of a building results from that which its structures allowed it to have been. Therefore, this work proposes a procedure to deal with the ‘local’ problem, i.e. the definition of a beam’s cross-section from its span. To that end, a simplified, parametric structural model is required. The available bits of information are organized into inputs, parameters and outputs of the analytical problem by matching each information with a structural quantity (load, cross-section, spacing, etc.). Two mathematical relationships among them are proposed, which express two equally possible dimensioning criteria, based either on joists’ strength or deformability. It seems that the joist’s strength was the option for lightly loaded joists, as in roofs or tightly spaced floor frames; conversely, heavily loaded joists conformed to the deformability criterion. Both dimensioning procedures are translated into a visual algorithm in Grasshopper, a plugin for Rhinoceros modelling software, which enables the parametric definition of objects. Finally, the proposed procedure is tentatively applied to automatically reconstruct the floor and roof frames that belonged to the domus on top of the Sarno Baths in Pompeii. The algorithm automatically picked the dimensioning criterion in relation to each frame’s span and hypothesized loads and determined joists’ orientation and minimum cross-sections. The obtained floor frames, whose structural conditions are considered as sensible, will be adopted in the overall virtual reconstruction proposal of the ruins, also based on the analytical evaluation of masonry structures.Highlights:- Proposal of a structural model for the dimensioning of timber floor beams in domestic spaces based on archaeological and literature information.- Parametrical interpretation of the model in Grasshopper for Rhinoceros software and optimization analysis of the structural parameters involved.- Application of the model to the reconstruction of floor frames in a house in the Sarno Baths complex, Pompeii.

Downloads

Download data is not yet available.

Author Biography

Luca Sbrogiò, University of Padova

Department of Cultural Heritage

References

Adam, J.-P. (1990). L'arte di costruire presso i Romani [Roman building]. Milano, IT: Longanesi.

Adembri, B., Alonso-Durá, A., Juan-Vidal, F., Bertacchi, G., Bertacchi, S., Cipriani, L., Fantini, F., & Soriano-Estevalis, B. (2016). Modelli digitali 3D per documentare, conoscere ed analizzare l'architettura e la costruzione nel mondo antico: L'esempio della Sala Ottagonale delle Piccole Terme di Villa Adriana [3D digital models for the documentation, knowledge and analysis of architecture and construction in the ancient world: the octagonal hall in the Small Baths of Villa Adriana]. Archeologia e Calcolatori, 27, 291-316. https://doi.org/10.19282/ac.27.2016.15

American Institute of Timber Construction (AITC). (2012). Timber construction manual. Hoboken: Wiley. https://doi.org/10.1002/9781118279687

Artioli, G., Ghedini, E. F., Modena, C., Bonetto, J., & Busana, M. S. (2019). Foreword: The MACH Project and the case study of the Sarno Baths in Pompeii. Journal of Cultural Heritage, 40, 228. https://doi.org/10.1016/j.culher.2019.08.001

Autiero, F., De Martino, G., Di Ludovico, M., & Prota, A. (2019a). Mechanical behavior of ancient mortar specimens from Pompeii site. Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2015), 1251-1262. https://doi.org/10.7712/120119.6994.18836

Autiero, F., De Martino, G., Di Ludovico, M., & Prota, A. (2019b). Mechanical properties of rock units from the Pompeii archaeological site, Italy. In P. De Wilde (Ed.), Structural Studies, Repairs and Maintenance of Heritage Architecture XVI (pp. 341-350). https://doi.org/10.2495/STR190291

Barbisan, U., & Laner, F. (1997). I solai in legno. Soluzioni tradizionali, elementi innovativi, esempi di dimensionamento [Timber floors: traditional solutions, innovations and calculation examples]. Milano: F. Angeli.

Barbisan, U., & Laner, F. (2000). Capriate e tetti in legno. Progetto e recupero [Timber roofs and trusses: design and restoration]. Milano: F. Angeli.

Bennoui-Ladraa, B., Chennaoui, Y., & Ainouche, H. (2020). The virtual archaeology and interpretative process: Case study of the virtual reconstitution of a Hercules marble statue from the nameless temple of Tipasa. Digital Applications in Archaeology and Cultural Heritage, 19, e00163. https://doi.org/10.1016/j.daach.2020.e00163

Benvenuto, E., Corradi, M., Foce, F., & Becchi, A. (2012). La scienza delle costruzioni e il suo sviluppo storico [Structural mechanics in its historical development]. Roma: Edizioni di storia e letteratura.

Bernardi, L., & Busana, M. S. (2019). The Sarno Baths in Pompeii: Context and state of the art. Journal of Cultural Heritage, 40, 231-239. https://doi.org/10.1016/j.culher.2019.04.012

Bernardi, L., Busana, M. S., Centola, V., Marson, C., & Sbrogiò, L. (2019). The Sarno Baths, Pompeii: Architecture development and 3D reconstruction. Journal of Cultural Heritage, 40, 247-254. https://doi.org/10.1016/j.culher.2019.04.011

Bianchini, M. (2010). Le tecniche edilizie nel mondo antico [Construction techniques in the Ancient world]. Roma: Dedalo Edizioni.

Camardo, D., & Notomista, M. (2015). The roof and suspended ceiling of the marble room in the House of the Telephus Relief at Herculaneum. Journal of Roman Archaeology, 28, 39-70. https://doi.org/10.1017/S1047759415002408

Cantalupi, A. (1863). Istituzioni pratiche elementari sull'arte di costruire le fabbriche civili [Principles of construction of civil buildings]. Milano: Salvi.

Cavalieri San-Bertolo, N. (1832). Istituzioni di architettura statica e idraulica [Principles of architecture, statics and hydraulics]. Mantova: Negretti.

Centola, V. (2018). I sistemi di copertura nelle domus di età romana [Roofing systems in the Roman domus] [PhD Thesis]. Università degli Studi di Padova.

Choisy, A. (1873). L'art de bâtir chez les Romains [Construction Science in the Roman age]. Paris: Ducher.

Curioni, G. (1872). L'arte di fabbricare. Costruzioni civili, stradali ed idrauliche [Building art: civil, road and hydraulic constructions]. Torino: Negro.

Dawn, S., & Biswas, P. (2019). Technologies and Methods for 3D Reconstruction in Archaeology. In S. M. Thampi, O. Marques, S. Krishnan, K.-C. Li, D. Ciuonzo, & M. H. Kolekar (Eds.), Advances in Signal Processing and Intelligent Recognition Systems (Vol. 968, pp. 443-453). Singapore: Springer. https://doi.org/10.1007/978-981-13-5758-9_38

De Martino, G., Di Ludovico, M., Prota, A., Manfredi, G., & Autiero, F. (2020). Floor typology. In H. Dessales (Ed.), The Villa of Diomedes. The making of a Roman villa in Pompeii (pp. 219-235). Paris: Editions Hermann-Centre Jean Berard. https://doi.org/10.3917/herm.dessa.2020.01.0219

Demetrescu, E., & Ferdani, D. (2021). From Field Archaeology to Virtual Reconstruction: A Five Steps Method Using the Extended Matrix. Applied Sciences, 11(11), 5206. https://doi.org/10.3390/app11115206

Dessales, H. (2011). Les savoir-faire des maçons romains, entre connaissance technique et disponibilité des matériaux. Le cas pompéien [Roman masons' expertise, between technical knowledge and material availability. The Pompeii case]. In N. Monteix & N. Tran (Eds.), Les savoirs professionnels des gens de métier. Études sur le monde du travail dans les sociétés urbaines de l'empire romain. Napoli: Centre Jean Berard. https://doi.org/10.4000/books.pcjb.5115

Dessales, H., & Tricoche, A. (2018). Un database per studiare le riparazioni post-sismiche [A database for the study of post-earthquake reconstructions]. Archeologia dell'Architettura, 33, 19-24. https://doi.org/10.1400/270042.

Dimbleby, G. W., & Grüger, E. (2002). Pollen analysis of soil samples from the A.D. 79 level: Pompeii, Oplontis and Boscoreale. In W. F. Jashemski & F. G. Meyer (Eds.), The natural history of Pompeii (pp. 181-216). Cambridge, NY: Cambridge University Press.

Donghi, D. (1906). Manuale dell'architetto. Compilato sulla traccia del Baukunde des architekten [Handbook of architecture on the basis of the Baukunde des architekten].Torino: UTET.

European Committee for Standardization (CEN). (2002). Eurocode 1: Actions on structures-Part 1-1: General actions-Densities, self-weight, imposed loads for buildings.

European Committee for Standardization (CEN). (2004). Eurocode 5: Design of timber structures-Part 1-1: General-Common rules and rules for buildings.

European Committee for Standardization (CEN). (2016). Structural timber. Strength classes.

Ginouvès, R. (1992). Dictionnaire méthodique de l'architecture grecque et romaine. Tome II. Eléments constructifs, supports, couvertures, aménagements intérieurs [Methodological dictionary of Greek and Roman architecture]. Athens : Ecole française de Rome / Ecole française d'Athènes.

Giordano, G., Ceccotti, A., & Uzielli, L. (1999). Tecnica delle costruzioni in legno [Timber structures]. Milano: Hoepli.

Giovannoni, G. (1925). La tecnica della costruzione presso i Romani [Roman structural engineering]. Roma: Società editrice d'arte illustrata.

Giuliani, C. F. (2006). L'edilizia nell'antichità [Building in the antiquity]. Roma: Carocci.

Guidobaldi, M. P., Camardo, D., Esposito, E., & Tommasino, E. (2008). I solai e gli architravi lignei dell'antica Ercolano [Timber floors and lintels in the ancient Herculaneum]. In P. G. Guzzo & M. P. Guidobaldi (Eds.), Nuove ricerche archeologiche nell'area vesuviana (scavi 2003-2006) [New archaeological findings in the Vesuvius area, excavations 2003-2006]. Atti del Convegno internazionale, Roma 1-3 febbraio 2007 (pp. 558-560). Firenze: L'Erma di Bretschneider.

Heyman, J. (1997). The stone skeleton: Structural engineering of masonry architecture. Cambridge, NY: Cambridge University Press.

Italian Comitte for Standardization (UNI). (2010). Legno strutturale: Classificazione a vista dei legnami secondo la resistenza meccanica. Parte 2: Regole per la classificazione a vista secondo la resistenza meccanica e valori caratteristici per tipi di legname strutturale [Structural timber: strength classes].

Lorenzoni, F., Valluzzi, M. R., Salvalaggio, M., Minello, A., & Modena, C. (2017). Operational modal analysis for the characterization of ancient water towers in Pompeii. Procedia Engineering, 199, 3374-3379. https://doi.org/10.1016/j.proeng.2017.09.446

Malacrino, C. G. (2013). Ingegneria dei greci e dei romani [Greek and Roman engineering]. San Giovanni Lupatoto: Arsenale Editrice.

Margueron, J.-Cl., & Gransard-Desmond, J.-O. (2012). From plan to volume: The need for archaeological analysis in 3D modeling. Archeologia e Calcolatori, supplemento 3, 397-410.

Mazzocchi, L. (1871). Trattato su le costruzioni in legno [Timber structures]. Milano: Vallardi.

McNeel, R. (2021). Rhinoceros (June 2021) [Computer software]. https://www.rhino3d.com

Menichelli, C., & Scappin, L. (2011). I solai lignei a Venezia [Timber floors in Venice]. In F. Doglioni & G. Mirabella Roberti (Eds.), Venezia: Forme della costruzione forme del dissesto [Venice: construction and degradation]. Venezia: Libreria Cluva.

Milizia, F. (1781). Principi di architettura civile [Principles of civil architecture]. Milano: Majocchi.

Ministry of Transportations and Infrastructures (MIT). (2018). Aggiornamento delle Norme Tecniche per le Costruzioni [New technical standards for civil constructions], Regulation 17/01/2018.

Miriello, D., Barca, D., Bloise, A., Ciarallo, A., Crisci, G. M., De Rose, T., Gattuso, C., Gazineo, F., & La Russa, M. F. (2010). Characterisation of archaeological mortars from Pompeii (Campania, Italy) and identification of construction phases by compositional data analysis. Journal of Archaeological Science, 37(9), 2207-2223. https://doi.org/10.1016/j.jas.2010.03.019

Morichi, R., Paone, R., Sampaolo, F., & Kockel, V. (Eds.). (2018). Pompei: Nuova cartografia informatizzata georiferita [Pompeii: new georeferenced digital cartography]. Roma: Arbor Sapientiae editore.

Moser, D., Allevato, E., Clarke, J. R., Di Pasquale, G., & Nelle, O. (2013). Archaeobotany at Oplontis: Woody remains from the Roman Villa of Poppaea (Naples, Italy). Vegetation History and Archaeobotany, 22(5), 397-408. https://doi.org/10.1007/s00334-012-0381-z

Moser, D., Nelle, O., & Di Pasquale, G. (2018). Timber economy in the Roman Age: Charcoal data from the key site of Herculaneum (Naples, Italy). Archaeological and Anthropological Sciences, 10(4), 905-921. https://doi.org/10.1007/s12520-016-0406-0

Napolitano, R., Jennings, C., Feist, S., Rettew, A., Sommers, G., Smagh, H., Hicks, B., & Glisic, B. (2019). Tool development for digital reconstruction: A framework for a database of historic Roman construction materials. Journal of Cultural Heritage, 40, 113-123. https://doi.org/10.1016/j.culher.2019.05.007

Oleson, J. P. (Ed.). (2009). The Oxford Handbook of Engineering and Technology in the Classical World. Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199734856.001.0001

Palladio, A. (1570). I quattro libri dell'architettura [The four books of architecture]. Venezia.

Pesando, F., & Guidobaldi, M. P. (2006). Le tecniche edilizie [Building techniques]. In Pompei, Oplontis, Ercolano, Stabiae. Roma-Bari: Laterza.

Pliny the Elder. (1988). Naturalis Historia [Natural history] (A. Corso, R. Mugellesi, & G. Rosati, Eds.). Torino: Einaudi.

Preisinger, C. (2021). Karamba 3D (June 2021) [Computer software]. https://www.karamba3d.com/

Rondelet, J. B. (1832). Trattato teorico e pratico dell'arte di edificare di Giovanni Rondelet. Prima traduzione italiana sulla sesta edizione originale con note e giunte importantissime per cura di Basilio Soresina [Practical and theoretical building science by J.B. Rondelet. First Italian translation with important notes added by Basilio Soresina]. Mantova: Società Editrice.

Ruggieri, N. (2017). Carpenteria di legno dei tetti e dei solai interpiano a Pompei nel I secolo D.C. [Wood-working in roofs and floors in Pompeii in the 1st century AD]. Restauro Archeologico, 4-19. https://doi.org/10.13128/RA-22204

Ruggieri, N. (2018). Timber "Science" in Herculaneum during the 1st Century A.D. MATEC Web of Conferences, 242. https://doi.org/10.1051/matecconf/201824201020

Rutten, D. (2021). Grasshopper. Algorithmic modeling for Rhino (June 2021) [Computer software]. https://www.grasshopper3d.com/

Salvadori, M., Boschetti, C., Baronio, P., & Sbrolli, C. (2019). Integrated methods for reconstructing the decoration and production process of the frigidarium wall-paintings, at the Sarno Baths, Pompeii. Journal of Cultural Heritage, 40, 299-308. https://doi.org/10.1016/j.culher.2019.04.020

Salvalaggio, M., Bonetto, J., Zampar, M., & Valluzzi, M. R. (2021). Numerical Prediction of the Seismic Behavior of Reassembled Columns in Ancient Structures: An Anastylosis Model for the Temple of Apollo Pythios in Gortyn (Crete). Heritage, 4(4), 3421-3441. https://doi.org/10.3390/heritage4040190

Sanpaolesi, L. (2001). Criteri di sicurezza [Safety criteria]. In F. Rossi & F. Salvi (Eds.), Manuale di Ingegneria Civile e Ambientale [Handbook of civil and environmental engineering]. Bologna: Zanichelli.

Sbrogiò, L. (2016). Il progetto simulato della domus romana. Premesse metodologiche al progetto di una copertura archeologica modulare [Simulated design of the roman domus: methodological premises to the design of an archaeological shelter] [Master's Thesis]. Università degli studi di Padova, Italy.

Sbrogiò, L., Bertolazzi, A., Turrini, U., Valluzzi, M. R., Centola, V., & Bonetto, J. (2018). Un percorso interdisciplinare per la ricostruzione degli orizzontamenti lignei delle domus romane. Restauro Archeologico, 4-29. https://doi.org/10.13128/RA-23174

Scamozzi, V. (1615). L'idea dell'architettura universale [The idea of a universal architecture]. Venezia.

Stellacci, S., & Rato, V. (2021). Timber-Framing Construction in Herculaneum Archaeological Site: Characterisation and Main Reasons for its Diffusion. International Journal of Architectural Heritage, 15(9), 1301-1319. https://doi.org/10.1080/15583058.2019.1672827

Ulrich, R. B. (1996). Contignatio, Vitruvius, and the Campanian Builder. American Journal of Archaeology, 100(1), 137-151. https://doi.org/10.2307/506301

Ulrich, R. B. (2013). Roman woodworking. New Heaven: Yale University Press.

Valluzzi, M. R., Lorenzoni, F., Deiana, R., Taffarel, S., & Modena, C. (2019). Non-destructive investigations for structural qualification of the Sarno Baths, Pompeii. Journal of Cultural Heritage, 40, 280-287. https://doi.org/10.1016/j.culher.2019.04.015

Vitruvius Pollio, M. (1997). De architectura [On architecture] (P. Gros, A. Corso, & E. Romano, Eds.). Torino: Einaudi.

Vitti, P. (2016). Building Roman Greece: Innovation in vaulted construction in the Peloponnese. Roma: 'L'Erma' di Bretschneider.

Zanker, P. (1993). Pompei. Società, immagini urbane e forme dell'abitare [Pompeii: society, urban scenery and dwelling]. Torino: Einaudi.

Downloads

Published

2022-01-21

How to Cite

Sbrogiò, L. (2022). Parametric approach to the reconstruction of timber structures in Campanian Roman houses. Virtual Archaeology Review, 13(26), 45–61. https://doi.org/10.4995/var.2022.15319

Issue

Section

Articles