Digital technology to locate the water catchment system of the Cuadrado Fountain in Montilla (Cordoba, Spain) in the 19th century




3D irrigation canal reconstruction, digital localization, water catchment systems, documentation, hydraulic heritage


The fortuitous discovery of part of the pipeline system that supplied the town of Montilla (Spain) in the late 19th century, which was made in September 2017 by the city’s fire service, originated an academic study in this regard. The engineer José Marí­a Sánchez-Molero y Lleguet designed this canalization, from the fountain of the “Cuadrado” to some tanks located in the “water’s house” (Montilla) in 1868. There are no remains of these constructions, except those found by the firefighters. The aim of this study is to collect, analyse and interpret all the existing graphic and documentary evidence in this regard, perform a 3D modelling of the catchment system at the fountain based on the compiled documentation and determine the terrain’s topography. Indeed, the virtual location on the digital model of the terrain based on the plans of Sánchez-Molero can help archaeologists to discover the true location, highlighting the suitability and usefulness of this research work.

The catchment system designed and executed by Sánchez-Molero is a system of ditches. These are made up of a series of ditches filled with gravel, arranged according to the slope in the shape of a herringbone, surrounding the fountain of Cuadrado (perfectly represented in the plan of Sánchez-Molero). Moreover, there is another main ditch attached to the wall of the dam. The system was designed to capture the waters of the fountains or runoff water from the adjoining orchards. It is a system based on gravel-filled trenches with no drainage pipes at the bottom, which could have led to its depletion, due to the possible cementation of spaces between gravels. For this reason, in 1902, other sources were sought, as the water of the Cuadrado was scarce. The system, in addition to the drains and the dam wall, consists of a container or collector, from which the water comes out through the fountain, and through a pipe located on one side of said container.

The catchment system is arranged along with a road system that is also indicated in the map of Sánchez-Molero. This distribution of roads still exists today. Therefore, the modelled system on the real scale can be oriented in the digital terrain model (DTM) of the corresponding plot. The location of the Cuadrado coincides with a well that currently exists. The study of the slopes and the runoff water flow lines coming from the fountains suggests that, in this arrangement of the catchment system, the drains intercept the course of water coming from all the upwelling areas, where the slope is steep (8-12%), i.e. twice as steep as in the high areas and orchards, where the average slope is 3-6%.

The location in the plan and on the terrain profile of the pipe that carried the water from the outlet of the Cuadrado reservoir to the water house was analysed. The water rise was found to be produced by the communicating vessels effect, due to the coincidence of the heights of the terrain. From there, the water was pumped to the water house. There was the register, located at the lowest point of elevation in the stream, currently called Cuadrado, and the stopcock, where the Flauta Fountain is located today. The pipeline follows the route of the Manantiales (which means “water springs” in Spanish).

The obtained results can help archaeologists to know the true location of the Cuadrado fountain, and disseminate the cultural hydric heritage of Montilla, promoting touristic routes. Water resource tourism is already a reality in many cities, including Montilla. The cultural dissemination of water resources is supported by various institutions, through the routes and the many sources and watering holes that the town owns. Among these routes, we can mention the long route of the fountains of Montilla. This route runs along the path of the Manantiales, following the pipeline map of Sánchez-Molero, which passes through the water house, the Flauta Fountain and the Cuadrado Fountain. The results of this work allow culturally the enhancement of this route.



Download data is not yet available.

Author Biographies

Pilar Carranza-Cañadas, Universidad de Córdoba

Asso. Professor in the Department of Graphic and Geomatic Engineering (University of Córdoba). She develops her teaching work at the School of Agricultural and Forestry Engineering, in subjects of Engineering Drawing, and Computer Aided Drawing applied to agroforestry engineering, gardening and horticulture. She is currently the director of the Interuniversity Master's Degree in Representation and Design in Architecture and Engineering at the University of Córdoba, jointly with the University of Málaga and Almería. Her research is focused on the field of Graphic Design in engineering and industrial archaeology, using new existing technologies and innovative ones.

Manuel Baena-Sánchez, Universidad de Córdoba

Instituto de Estudios de Postgrado, Rectorado, 14070, Córdoba, España

Rafael Hidalgo Fernández, Universidad de Cordoba

He belongs to the Department of Graphic Engineering and Geomatics. He is a professor at the University of Cordoba. His line of research is the representation of heritage through photogrammetry, augmented reality and 3D scanning. His latest works deal with electrical impedance spectroscopy, neural networks and automation of the digitization of parts using photogrammetry, and study of the columns of the Mosque Cathedral of Cordoba (Spain).

Paula Triviño-Tarradas, Graphic Engineering and Geomatics Department. University of Cordoba.

Lecturer at the University of Cordoba in the Department of Graphic Engineering and Geomatics. Inter-university Master in Representation and Design in Engineering and Architecture. Her research deals with the innovative resources to be implemented in the Graphic design field for engineers in technical schools.


Acosta, M. (2016). Modificación de los cauces de los ríos por causas naturales y por la influencia del hombre. Auge 21, 11(2), 60-77.

Antequera, M., Iranzo, E., & Hermosilla, J. (2014). Las galerías drenantes en España: cuantificación y clasificación tipológica de los sistemas horizontales de captación de aguas subsuperficiales. In: C. Sanchis-Ibor, G. Palau-Salvador, I. Mangue Alférez, & L. P. Martínez-Sanmartín (Eds.), Irrigation, Society, Landscape. Tribute to Thomas F. Glick (pp 1339-1154). Valencia: Universitat Politècnica de València.

Aguas de Montilla. (2020). El agua a través del tiempo. Recuperado: julio 11, 2021, desde

Aguas de Montilla. (2018). Aguas de Montilla y el Ayuntamiento conmemorarán el 150 aniversario de la traída de agua a Montilla. Recuperado: mayo 28, 2021, desde

Aqua Ducta. (2020). Recreación 3D del Acueducto Romano de Gades. Recuperado: julio 14, 2021, desde

Ayuntamiento de Cartagena. (2019). Ruta del sender del agua en Perin. Recuperado: julio 12, 2021, desde

Ayuntamiento de Madrid. (2020). El agua de Madrid. Recuperado: mayo 29, 2021, desde

Ayuntamiento de Montilla. (2015). Manantiales y Fuentes de Andalucía. Pozo del Cuadrado. Recuperado: julio 10, 2021, desde

Ayuntamiento de Montilla. (2018). Cuaderno de campo de las Fuentes de Montilla. Recuperado: julio 10, 2021, desde

Blasco Esquivias, B. (2014). Toledo y Madrid: sistemas de captación y uso del agua para servicio domestico en la Edad Moderna. En: M.M. Lozano Bartolozzi & V. Mendez Hernan (Coor. y Eds.), Patrimonio cultural vinculado con el agua, paisaje, urbanismo, arte, ingeniería y turismo (pp 267-279). Mérida: Junta de Extremadura, Editora Regional de Extremadura, Universidad de Extremadura, Ministerio de Economía, Industria y Competitividad.

EMACSA. (2019). Ruta por las fuentes cordobesas. Recuperado: octubre 29, 2021, desde

EMASESA. (2021). Empresa Metropolitana de Abastecimiento y Saneamiento de Aguas de Sevilla, S.A. Recuperado: 14 julio, 2021, desde

Fernando García, R. (2018). Apuntes sobre captación de aguas subterráneas. Secretaría de Infraestructura y Política Hídrica. Consejo Hídrico Federal. Universidad Nacional de la Pampa. Universidad Nacional del Centro de la Provinica de Buenos Aires.

Fuentes Yangüe, J. L.(1993). Aguas subterráneas. Hojas divulgadoras 1/92 HD. Ministerio de Agricultura Pesca y Alimentación, Secretaría General de Estructuras Agrarias.

Gambin, T, Hyttinen, K., Sausmekat, M., & Wood, J. (2021). Making the indivisible visible: underwater Malta-A virtual museum for submerged cultural heritage. Remote Sensing, 13(8), 1558.

Gamero Gutiérrez, F., Recio Espejo, J. M, García-Ferrer Porras, A., & Borja Barrera, C. (2017). Localización y caracterización y antiguos qanats de abastecimiento de la ciudad de Córdoba desde Sierra Morena. Boletín de la Asociación de Geógrafos Españoles, 74, 417-435. https:

García González, L. (2004). Agua y turismo. Nuevos usos de los recursos hídricos en la Península Ibérica. Un enfoque integral. Boletín de la Asociación de Geógrafos Españoles, 37, 239-255.

Gómez, J. Mª (2005). Galerías asociadas a presas subálveas, generadoras de recursos de agua en el sureste de la Península Ibérica: el modelo del sistema de la Rambla de Béjar. Nimbus, 15-16, 101-120.

Gómez, J. M., Gil, E., Aliaga, I., López, J. A., & Martinez, R. (2007). Las galerías, construcciones para alumbrar agua de freáticos próximos en el NE de la región de Murcia: minados con espejuelos en Jumilla. Investigaciones Geográficas, 42, 89-107.

Gómez, J. M., Gil, E., López, J. A., Martinez, R., & Aliaga, I. (2009). Paisaje y patrimonio generados por galería y minados en la Región de Murcia (1ª ed). Murcia: Universidad de Murcia.

Gómez-Pantoja, J. (1995). Stoffel en España. Una respuesta a Joël Le Gall. Gerión, 13, 17-26.

Granada Human Smart City. (2020). Modelos 3D aljibes. Recuperado: junio 28, 2021, desde

Guarnieri, A., Pirotti, F., & Vettore, A. (2010). Cultural heritage interactive 3D models on the web: an approach using open source and free software. Journal of Cultural Heritage, 11(3), 350-353.

Herman, G. V., Caciora, T., Ilies, D. C., Ilies, A., Deac, A., Sturza, A., Sonko, S. M., Suba, N. S., & Nistor, S. (2020). 3D Modeling of the cultural heritage: between opportunity and necessity. Journal of Applied Engineering Sciences, 10(23), 27-30.

Hervás, R. Mª., &Tudela, R. (2012). El agua como patrimonio: educación y museos del agua. En: J.Mª. Gómez Espín & R.Mª Hervás Avilés (Coord). Patrimonio hidraúlico y cultura del agua en el Mediterráneo (pp. 13-32). Murcia: Compobell, S.L.

Instituto de Estadística y Cartografía de Andalucía. (2021). Recuperado: en Julio 7, 2021, desde

Jiménez, J. Mª. (2012). José María Sánchez-Molero y Lletget. Recuperado: junio 10, 2021, desde

López Vera, F., & López-Camacho, B. (2017). Abastecimiento histórico de agua al Monasterio del Paular: un qanat en la sierra de Guadarrama (Madrid, España). Boletín Geológico y Minero, 128(1), 193-206.

López Hurtado, A., & Soto Caba, M. A. (2019). El Sistema hidráulico de abastecimiento de agua desde los manantiales de el Robledo (Moralzarzal, Comunidad de Madrid). Un ejemplo de ingeniería rural construida mediante prestación vecinal en el siglo XIX. Recuperado: mayo 10, 2021, desde

López Jimenez, O., & Martínez Calvo, V. (2014). El agua del rey. Historia y arqueología de los acuíferos de la Mesa de Ocaña y su conducción al Real Sitio de Aranjuez. Riba-roja de Turia: Textos I Imatges.

López-Camacho, B. (2001). Galerías de Captación de agua en Europa Mediterránea. Revista de Obras Públicas, 3414, 121-126. Recuperado: mayo 11, 2021, desde

Magrama. (2020). Ministerio de Agricultura, Pesca y Alimentación. Recuperado: junio 28, 2021, desde

Manantiales y fuentes de Andalucía. (2020). Búsqueda por provincias. Recuperado: abril 16, 2021, desde:

Margetis, G., Apostolakis, K. C., Ntoa, S., Papagiannakis, G., & Stephanidis, C. (2021). X-reality museums: unifying the virtual and real world towards realistic virtual museums. Applied Science, 11, 338.

Martín Rodríguez, L. F. (2011). Captaciones de aguas subterráneas en Gran Canaria. Necesidad de su inventario. (Tesis Doctoral, Universidad de Gran Canaria, España). Recuperado: mayo 11, 2021, desde

Meyer, E., Grussenmeyer, P., Perrin, J.-P., Durand, A., & Drap, P. (2007). A web information system for the management and the dissemination of Cultural Heritage data. Journal of Cultural Heritage, 8(4), 396-411.

Montilla Digital. (2021). Recuperado: 14 julio, 2021.

Muñoz de Pablo, M. J. (2006). Las trazas del agua al norte de la Villa de Madrid. Anales del Instituto de Estudios Madrileños, XLVI.467-519.

Murphy, M., McGovern, E., & Pavia, S. (2013). Historic Building Information Modelling – Adding intelligence to laserand image based surveys of European classical architecture. ISPRS Journal of Photogrammetry and Remote Sensing, 76, 89-102.

Nowak, M. M., Dziók, K ., Ludwisiak, L., & Chmiel, J. (2020). Mobile GIS applications for environmental field surveys: A state od the art. Global Ecology and Conservation, 23, e01089.

Pavlidis, G., Koutsoudis, A., Arnaoutoglou, F., Tsioukas, V., & Chamzas, C. (2007). Methods for 3D digitization of cultural heritage. Journal of Cultural Heritage, 8(1), 93-98.

Pérez-Martín, E., Herrero-Tejedor, T. R., Gómez-Elvira, M. A., Rojas-Sola, J. I., & Conejo-Martín, M. A. (2011). Applied Geography, 31, 941-949.

Polonio Armada, J. (2016). Las sinapsis del poder en una sociedad pequeña y cerrada. El caso de Montilla, 1902-1975. (Tesis Doctoral, Universidad de Córdoba, España). Recuperado: mayo 30, 2021, desde

Redweik, P., Cláudio, A. P., Carmo, M. B., Naranjo, J. M., & Sanjosé, J. J. (2017). Digital preservation of cultural and scientific heritage: involving university students to raise awareness of its importance. Virtual Archaeology Review, 8(16), 22-34.

Rodrigues, J., Teixeira, R., Matos, R., & Rodrigues, H. (2019). Development of a Web Application for Historical Building Management through BIM Technology. Advances in Civil Engineering, 2019, 1-15.

Rojas-Sola, J. I., Castro-García, M., & Carranza-Cañadas, M. P. (2011). Content management system incorporated in a virtual museum hosting. Journal of Cultural Heritage, 12(1), 74-81.

Roy, P., Chandramoha, J., Vinod Kumar, K., Raj, A., Shaik, M., Bothale, V., & Diwakar, P. G. (2017). Use of remote sensing and geospatial technique for pre-feasibility analysis of rural water pipeline grids. Journal of the Indian Society of Remote Sensing, 45(4),667-672.

Scopigno, R. (2012). Sampled 3D models for Cultural Heritage: which uses beyond visualization? Virtual Archaeology Review, 3(5), 109-115.

Stoffel, E. G. H. C. (1887). Histoire de Jules César guerre civile. Planches, 3. Paris: Imprimerie nationale.

Tellez, I. (2018). El ayuntamiento localiza e investiga la antigua red de abastecimiento de agua creada por Sánchez-Molero. Recuperado: mayo 11, 2021, desde

Yang, X., Grussenmeyer, P., Koehl. M., Macher, H., Murtiyoso, A., & Landes, T. (2020). Review of built heritage modelling: Integration of HBIM and other information techniques. Journal of Cultural Heritage, 46, 350-360.



How to Cite

Carranza-Cañadas, P., Baena-Sánchez, M., Hidalgo Fernández, R., & Triviño-Tarradas, P. (2022). Digital technology to locate the water catchment system of the Cuadrado Fountain in Montilla (Cordoba, Spain) in the 19th century. Virtual Archaeology Review, 13(27), 100–116.