Evaluation of the effectiveness of HDR tone-mapping operators for photogrammetric applications


  • Rossella Suma University of Warwick
  • Georgia Stavropoulou ESAT - PSI, VISICS, KU Leuven
  • Elisavet K. Stathopoulou National Technical University of Athens
  • Luc van Gool ESAT - PSI, VISICS, KU Leuven
  • Andreas Georgopoulos National Technical University of Athens
  • Alan Chalmers University of Warwick




high dynamic range imaging, HDR tone-mapping, keypoint detection, image-based 3D reconstruction


The ability of High Dynamic Range (HDR) imaging to capture the full range of lighting in a scene has meant that it is being increasingly used for Cultural Heritage (CH) applications. Photogrammetric techniques allow the semi-automatic production of 3D models from a sequence of images. Current photogrammetric methods are not always effective in reconstructing images under harsh lighting conditions, as significant geometric details may not have been captured accurately within under- and over-exposed regions of the image. HDR imaging offers the possibility to overcome this limitation, however the HDR images need to be tone mapped before they can be used within existing photogrammetric algorithms. In this paper we evaluate four different HDR tone-mapping operators (TMOs) that have been used to convert raw HDR images into a format suitable for state-of-the-art algorithms, and in particular keypoint detection techniques. The evaluation criteria used are the number of keypoints, the number of valid matches achieved and the repeatability rate. The comparison considers two local and two global TMOs. HDR data from four CH sites were used: Kaisariani Monastery (Greece), Asinou Church (Cyprus), Château des Baux (France) and Buonconsiglio Castle (Italy).


Download data is not yet available.


Banterle, F., Artusi, A., Debattista, K.,&Chalmers, A. (2011). Advanced high dynamic range imaging: theory and practice. Natick, MA, USA: CRC Press.http://dx.doi.org/10.1201/b11373

Bay, H., Tuytelaars, T.,&Van Gool, L.(2006). Surf: Speeded up robust features. Computer Vision and Image Understanding, 110(3), 346–359. http://dx.doi.org/10.1016/j.cviu.2007.09.014

Chalmers, A., Bonnet, G., Banterle, F., Dubla, P., Debattista, K., Artusi, A.,&Moir, C.(2009). High-dynamic-range video solution. In ACM SIGGRAPH ASIA 2009 Art Gallery and Emerging Technologies: Adaptation p. 71. http://dx.doi.org/10.1145/1665137.1665190

Debevec,P., & Malik J. (1997). Recovering high dynamic range radiance maps from photographs. InProceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '97)(pp. 369–378). New York, NY, USA: ACM Press/Addison-Wesley Publishing Co. http://dx.doi.org/10.1145/258734.258884

Dylla, K., Frischer, B., Müller, P., Ulmer, A.,&Haegler, S.(2008). Rome reborn 2.0: acase study of virtual city reconstruction using procedural modeling techniques. Computer Graphics World, 16, 62–66.http://dx.doi.org/10.15496/publikation-2869

Ehsan,S., Kanwal, N., Clark, A. F.,&Mcdonald-Maier, K. D.(2010). Improved repeatability measures for evaluating performance of feature detectors. Electronics Letters, 46(14), 998–1000.http://dx.doi.org/10.1049/el.2010.1442

Fattal, R., Lischinski, D.,&Werman, M.(2002). Gradient domain high dynamic range compression. In ACM Transactions on Graphics (TOG), 21(3), 249–256. http://dx.doi.org/10.1145/566654.566573

Guidi, G., Gonizzi, S.,&Micoli, L. L.(2014). Image pre-processing for optimizing automated photogrammetry performances. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(5),145–152.http://dx.doi.org/10.5194/isprsannals-II-5-145-2014

Hartley, R.,&Zisserman, A.(2003). Multiple view geometry in computer vision. Cambridge University Press.http://dx.doi.org/10.1017/CBO9780511811685

Kontogianni, G., Stathopoulou, E. K., Georgopoulos, A.,&Doulamis, A.(2015). HDR imaging for feature detection on detailed architectural scenes. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5/W4),p. 325–330. http://dx.doi.org/10.5194/isprsarchives-XL-5-W4-325-2015

Ledda, P., Chalmers, A., Troscianko, T., &Seetzen, H. (2005). Evaluation of tone mapping operators using a high dynamic range display. ACM Transactions on Graphics (TOG), 24(3), pp. 640–648. http://dx.doi.org/10.1145/1073204.1073242

Lowe, D.G.(1999). Object recognition from local scale-invariant features. In Computer Vision. The proceedings of the seventh IEEE international conference on, 2, pp. 1150–1157.http://dx.doi.org/10.1109/ICCV.1999.790410

Lowe, D.G.(2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2),91–110. http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

Mantiuk, R., Krawczyk, G., Mantiuk, R.,&Seidel, H.P.(2007). High dynamic range imaging pipeline: Perception-motivated representation of visual content. In: Human Vision and Electronic Imaging XII, 6492, San Jose, USA, SPIE. http://dx.doi.org/10.1117/12.713526

Mantiuk, R., Daly, S.,&Kerofsky, L.(2008). Display adaptive tone mapping. ACM Transactions on Graphics (TOG), 27(3), 68:1–68:10. http://dx.doi.org/10.1145/1360612.1360667

Muja, M.,&Lowe, D.G.(2009). Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP (1), 2, 331–340.Ntregka, A., Georgopoulos, A.,&Quintero, M. S.(2014). Investigation on the use of HDR images for cultural heritage documentation. International Journal of Heritage in the Digital Era, 3(1), 1–18. http://dx.doi.org/10.1260/2047-4970.3.1.1

Přibyl, B., Chalmers, A.,&Zemčík, P.(2012). Feature point detection under extreme lighting conditions. In Proceedings of the 28th Spring Conference on Computer Graphics. ACM, pp. 143–150. http://doi.acm.org/10.1145/2448531.2448550

Přibyl, B., Chalmers, A., Zemčík, P., Hooberman, L.,&Čadík, M.(2016). Evaluation of feature point detection in high dynamic range imagery. Journal of Visual Communication andImage Representation, 38(1), pp.141–160.

Reinhard, E., Stark, M., Shirley, P.,&Ferwerda, J.(2002). Photographic tone reproduction for digital images. In ACM Transactions on Graphics (TOG), 21(3), ACM,pp. 267–276. http://dx.doi.org/10.1145/566654.566575

Rosten, E.,&Drummond, T.(2006). Machine learning for high-speed corner detection. In Computer Vision–ECCV 2006, Springer Berlin Heidelberg, pp. 430–443. http://dx.doi.org/10.1007/11744023_34

Schmid, C., Mohr, R.,&Bauckhage, C.(2000). Evaluation of interest point detectors. International Journal of Computer Vision, 37(2),pp. 151–172. http://dx.doi.org/10.1023/A:1008199403446

Smith, S. M., &Brady, J. M. (1997). SUSAN—a new approach to low level image processing. International journal of Computer Vision, 23(1), pp. 45–78. http://dx.doi.org/10.1023/A:1007963824710

Tuytelaars, T.,&Mikolajczyk, K.(2008). Local invariant feature detectors: a survey. Foundations and Trends in Computer Graphics and Vision, 3(3), pp. 177–280.http://dx.doi.org/10.1561/0600000017

Wheatley, D.(2011). High dynamic range imaging for archaeological recording. Journal of Archaeological Method and Theory, 18(3),pp. 256–271. http://dx.doi.org/10.1007/s10816-010-9100-1




How to Cite

Suma, R., Stavropoulou, G., Stathopoulou, E. K., van Gool, L., Georgopoulos, A., & Chalmers, A. (2016). Evaluation of the effectiveness of HDR tone-mapping operators for photogrammetric applications. Virtual Archaeology Review, 7(15), 54–66. https://doi.org/10.4995/var.2016.6319