Innovative technologies, certification and assessment tools for a sustainable building heritage

Authors

  • Fabio Minutoli Università di Messina

DOI:

https://doi.org/10.4995/vitruvio-ijats.2021.16530

Keywords:

sustainability, heritage, innovative technologies, assessment method.

Abstract

E' evidente che buoni risultati nel campo della sostenibilità ambientale si possono ottenere da politiche di efficienza energetica per gli edifici - per lo più realizzati o in itinere - costruiti per oltre il 50% prima della disattesa legge 373/76 che prevedeva, nel periodo del petrolio europeo crisi, vincoli per la progettazione, installazione, esercizio e manutenzione degli impianti termici e requisiti per l'isolamento termico degli edifici per il contenimento dei consumi.Meno chiara è invece la parte di fabbricato oggetto di conservazione (ai sensi del D.Lgs. 42/2004 o previgenti normative in materia) o di immobili vincolati ope legis (art. 12 D.Lgs. 42/2004, asset appartenenti allo Stato, alle regioni, agli enti pubblici territoriali, nonché ad ogni altro ente ed istituto pubblico e soggetti giuridici privati senza scopo di lucro e che siano opera di autore non più in vita e la cui esecuzione risalga a più di settant'anni ), per i quali non sarebbe possibile applicare le limitazioni dei decreti 192/2005 e 311/2006, che esonerano gli edifici "il cui rispetto dei requisiti comporterebbe un'alterazione inaccettabile della loro natura o aspetto, con particolare riferimento ai o caratteristiche artistiche"degli obblighi di efficienza energetica.In questo lavoro si vogliono giustificare e illustrare alcune scelte fatte da istituti di ricerca internazionali in merito alla difficoltà di conciliare le nuove richieste di sostenibilità legate alla necessità di ridurre i consumi (soprattutto da combustibili fossili) con quelle del valore storico degli edifici oggetto di intervento , presentando criteri di valutazione che possano fornire un metodo oggettivo per quantificare la compatibilità tra nuovo ed esistente, criteri che – per avere capacità predittiva e quindi poter guidare le scelte ex ante e non misurarle ex post – utilizzino strumenti di progettazione digitale (BIM , GIS, ecc.).

Downloads

Download data is not yet available.

Author Biography

Fabio Minutoli, Università di Messina

Dipartimento di Ingegneria

References

AA.VV. 2017. Sistema di verifica GBC Historic Building per il restauro e la riqualificazione degli edifici storici, 45-46.

Chatzipanagi, A., & Frontini F. (2012.) Building Integrated Photovoltaics - Thermal Aspects: Low Energy House for Testing BiPV Systems, in proceedings of the BRENET Status-Seminar «Forschen für den Bau im Kontext von Energie und Umwelt», ETH-Zürich.

Balocco, C., & Marmonti, E. 2013. 'Optimal and sustainable plant refurbishment in historical buildings:a study of anancient monastery converted into a showroom in Florence', Sustainability, 5 (4), 1700-1724. https://doi.org/10.3390/su5041700

Boarin, P., Guglielmino, D., Pisello, A.L., & Cotana, F. 2014. Sustainability assessment of historic buildings: lesson learnt from an Italian case study through LEED® rating system, Energy Procedia, 61, 1029-1032. https://doi.org/10.1016/j.egypro.2014.11.1017

Cabeza, L.F., De Gracia A., & Pisello A.L. 2018. 'Integration of renewable technologies in historical and heritage buildings: a review', Energy&Buildings, 177, 96-111. https://doi.org/10.1016/j.enbuild.2018.07.058

Castaldo, V.L., Pisello, A.L., Boarin, P., Petrozzi, A., & Cotana, F. 2017. 'The experience of international sustainability protocols for retrofitting historical buildings in Italy', Buildings, 7, 52. https://doi.org/10.3390/buildings7020052

Chen, H., Chiang, C., Shu, C., & Lee, S. 2012. 'Self-power consumption research with the thermal effects and optical properties of the HCRIBIPV window system', Journal of Electronic Science and Technology, 10, 29-36. https://doi.org/10.3969/j.issn.1674-862X.2012.01.005

Delponte, E., Marchi, F., Frontini, F., Polo, C., Fath, K., & Batey, M. 2015. BIPV in EU28, from niche to mass market: an assessment of current projects and the potential for growth through product innovation, in Proceedings of the 31st European photovoltaic solar energy conference and exhibition, 3046-3050. https://doi.org/10.4229/EUPVSEC20152015-7DO.15.4

Dessì, V. M. 2013. Methods and tools to evaluate visual impact of solar technologies in urban environment, Proceedings of CISBAT, Lausanne, 679-688.

Farkas, K., Maturi, L., Scognamiglio, A., Frontini, F., Cristina, M., Probst, M., et al. 2015. Designing photovoltaic systems for architectural integration, criteria and guidelines for product and system developers, Report T.41.A.3/2: IEA SHC Task 41 Solar Energy and Architecture.

Florio, P., Munari Probst, M.C., Schüler, A., Roecker, C., & Scartezzini, J.L. 2018. 'Assessing visibility in multi-scale urban planning: a contribution to a method enhancing social acceptability of solar energy in cities', Solar Energy, 173, pp. 97-109. https://doi.org/10.1016/j.solener.2018.07.059

Giombini, M. & Pinchi, E.M. 2015. 'Energy functional retrofitting of historic residential buildings: the case study of the historic center of Perugia', Energy Procedia, 82, 1009-1016. https://doi.org/10.1016/j.egypro.2015.11.859

Kandt, A., Hotchkiss, E., Walker, A., Buddenborg, J., & Lindberg, J. 2011. Implementing solar PV projects on historic buildings and in historic districts, Technical Report, NREL/TP-7A40-51297. https://doi.org/10.2172/1026574

Kooles, K., Frey, P., & Miller, J. 2012. Installing solar panels on historic buildings. A Survey of the Regulatory Environment, Relatório Técnico do Departamento de Energia dos Estados Unidos-US DOE, North Carolina Solar Center e National Trust for Historic Preservation, US Department of Energy Solar Energy Technologies Office, 52.

Li, R., Dai, Y., & Wang, R. 2015. 'Experimental and theoretical analysis on thermal performance of solar thermal curtain wall in building envelope', Energy and Buildings, 87, 324-334. https://doi.org/10.1016/j.enbuild.2014.11.029

Munari Probst, M. C. & Roecker, C. 2011. Urban acceptability of building integrated solar systems: Leso QSV approach, in Proceedings ISES 2011, Kassel, Germany. https://doi.org/10.18086/swc.2011.27.10

Munari Probst, M. C. & Roecker, C. 2015. Solar Energy promotion and Urban Context protection: LESO-QSV (Quality, Site, Visibility) method, in Proceedings PLEA 2015, Bologna.

Munari Probst, M. C. & Roecker, C. 2019. 'Criteria and policies to master the visual impact of solar systems in urban environments: The LESO-QSV method', Solar Energy, 184, pp. 672-687. https://doi.org/10.1016/j.solener.2019.03.031

Peng, J., Lu, L., Yang, H., & Han, J. 2013. 'Investigation on the annual thermal performance of a photovoltaic wall mounted on a multilayer façade', Applied Energy, 112, 646-656. https://doi.org/10.1016/j.apenergy.2012.12.026

Pisello, A.L., Petrozzi, A., Castaldo, V.L., & Cotana, F. 2016. 'On an innovative integrated technique for energy refurbishment of historical buildings: thermal-energy, economic and environmental analysis of a case study', Appl.Energy, 162, 1313-1322. https://doi.org/10.1016/j.apenergy.2015.05.061

Sibley, M. 2006. The Historic hammāms of Damascus and Fez: lessons of sustainability and future developments, in 23rd conference on passive and low energy architecture (PLEA), Geneva; Switzerland, 181-186.

Sibley, M., & Sibley, M. 2013. 'Hybrid green technologies for retrofitting heritage buildings in North African medinas: combining vernacular and high-tech solutions for an innovative solar powered lighting system for hammam buildings', Energy Procedia, 42, 718-725. https://doi.org/10.1016/j.egypro.2013.11.074

Wang, M., Peng, J., Li, N., Lu, L., Ma, T., & Yang, H. 2016. 'Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model', Energy, 112 (Supplement C), 538-548. https://doi.org/10.1016/j.energy.2016.06.120

Zhang, W., Lu, L., & Peng, J., Song, A. 2016. 'Comparison of the overall energy performance of semi-transparent photovoltaic windows and common energy-efficient windows in Hong Kong', Energy and Buildings, 128 (Supplement C), 511-518. https://doi.org/10.1016/j.enbuild.2016.07.016

Zhang, W., Lu, L., Chen, X. 2017. 'Performance evaluation of Vacuum Photovoltaic Insulated glass unit', Energy Procedia, 105 (Supplement C), 322-326. https://doi.org/10.1016/j.egypro.2017.03.321

Zhou, Y. P., Wu, J. Y., Wang, R. Z., Shiochi, S., & Li, Y. M. 2008. 'Simulation and experimental validation of the variable-refrigerant-volume (VRV) air-conditioning system in EnergyPlus', Energy and Buildings, 40(6), 1041-1047. https://doi.org/10.1016/j.enbuild.2007.04.025

Downloads

Published

2021-12-31

Issue

Section

Articles