Genetic factors of functional traits




genetic, longevity, omics, resilience, resistance to diseases, selection, rabbit


Selection of functional traits is a challenge for researchers, but an increasingly necessary objective due to the growing concern regarding animal welfare and overcoming the problems of reducing antibiotic use in rabbit production without undermining the animals’ productivity. The aim of this review is to discuss the genetic control of resistance to diseases, longevity and variability of birth weight within a litter, or litter size variability at birth within doe, describing the selection programmes and the first results from a multi-omics analysis of resistance/susceptibility to diseases. The heritability is around 0.13 for longevity, 0.01 for uniformity in birth weight, 0.09 for litter size variability and around 0.11 for disease resistance. Genetic correlations between functional traits and production traits are mostly no different from zero, or are moderately favourable in some cases. Six selection programmes developed in three countries are reviewed. Line foundation with high pressure for selection or divergent selection experiments are different methodologies used, and favourable responses to selection have been achieved. Genomics studies have revealed associations in regions related to immune system functionality and stress in lines selected for litter size variability. Knowledge of the role of gut microbiota in the rabbit’s immune response is very limited. A multi-omics approach can help determine the microbial mechanisms in regulation immunity genes of the host.


Download data is not yet available.

Author Biographies

Mª Luz García, Miguel Hernández University

Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH)

Melanie Gunia, Université de Toulouse


Mª José Argente, Miguel Hernández University

Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH)


Agea I., García M.L., Blasco A., Argente M.J. 2019. Litter survival differences between divergently selected lines for environmental sensitivity in rabbits. Animals, 9: 603.

Agea I., García M.L., Blasco A., Massányi P., Capcarová M., Argente M-J. 2020a. Correlated response to selection for litter size residual variability in rabbits’ body condition. Animals. 10: 2447.

Agea I., Muelas R., García ML., Hernández P., Santacreu M.A., Armero E., Blasco A., Argente MJ. 2020b. Correlated response in plasma fatty acids profile in rabbits selected for environmental sensitivity. In Proc. 12th World Rabbit Congress, 1-3 July, 2020. Nantes, France.

Argente M.J., Calle E.W., García M.L., Blasco A. 2017. Correlated response in litter size components in rabbits selected for litter size variability. J. Anim. Breed. Genet., 134: 505-511.

Argente M.J., García M.L. Zbyňovská K., Petruška P., Capcarová M., Blasco A. 2019. Correlated response to selection for litter size environmental variability in rabbits´ resilience. Animal, 13: 2348-2355.

Arrazuria R., Elguezabal N., Juste R. A., Derakhshani H., Khafipour E. 2016. Mycobacterium avium Subspecies paratuberculosis Infection Modifies Gut Microbiota under Different Dietary Conditions in a Rabbit Model. Front. Microbiol., 7: 446.

Arrazuria R., Pérez V., Molina E., Juste R.A., Khafipour E., Elguezabal N. 2018. Diet induced changes in the microbiota and cell composition of rabbit gut associated lymphoid tissue (GALT). Sci. Rep., 8: 141031.

Baselga M., Deltoro J., Camacho J., Blasco A. 1988. Genetic analysis on lung injury in four strains of meat rabbit. In: Proc. 4th World Rabbit Congress, 10-14 October, 1988. Budapest, Hungary, Vol. 1, 120-127.

Baselga M. 2004. Genetic improvement of meat rabbits. Programmes and diffusion. In Proc. 8th World Rabbit Congress, 7-10 September, 2004. Puebla, México, Vol. 1, 1-13.

Bäuerl C., Collado M.C., Zúñiga M., Blas E., Pérez Martínez G. 2014. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy. PloS one, 9: e105707.

Beaumont M., Paës C., Mussard E., Knudsen C., Cauquil L., Aymard P., Barilly C., Gabinaud B., Zemb O., Fourre S., Gautier R., Lencina C., Eutamène H., Theodorou V., Canlet ., Combes S. 2020. Gut microbiota derived metabolites contribute to intestinal barrier maturation at the sucklingto-weaning transition. Gut Microbes.,11: 1268-1286.

Beloumi D., Blasco A., Muelas R., Santacreu M.A., García M.L., Argente M.J. 2020. Inflammatory correlated response in two lines of rabbit selected divergently for litter size environmental variability. Animals, 10: 1540.

Belloumi D., Argente M.J., García M.L., Blasco A.1, Santacreu M.A. 2021a. Study of biomarkers of disease sensitivity in a robust and standard maternal line. In Proc. 12th World Rabbit Congress, 1-3 July, 2020. Nantes, France.

Belloumi D., Casto-Rebollo C., Blasco A., García M.L., Ibañez-Escriche N., Argente M.J. 2021b. Análisis Metagenómico de la microbiota cecal en dos líneas de conejo seleccionadas divergentemente por varianza ambiental del tamaño de camada. XIX Jornadas de Producción Animal, 1-2 June, 2021. Zaragoza, Spain.

Berghof T.V.L., Poppe M., Mulder H.A. 2019. Opportunities to improve resilience in animal breeding programs. Front. Genet. 9: 692.

Blasco A., Martínez-Álvaro M., García M.L., Ibáñez-Escriche N., Argente M.J. 2017. Selection for genetic environmental sensitivity of litter size in rabbits. Genet. Sel. Evol., 49: 48-55.

Bodin L., Bolet G., Garcia M., Garreau H., Larzul C., David I. 2010a. Robustesse et canalisation: vision de généticiens. INRA Prod. Anim., 23: 11-22.

Bodin L., Garcia M., Saleil G., Bolet G., Garreau H. 2010b. Results of 10 generations of canalising selection for rabbit birth weight. In Proc. 9th World Congress on Genetics Applied to Livestock Production, August, Leipzig, Germany, 0391.

Bolet G., Garreau H., Joly T., Theau-Clement M., Falieres J., Hurtaud J., Bodin L. 2007. Genetic homogenisation of birth weight in rabbits: Indirect selection response for uterine horn characteristics. Livest. Sci., 111: 28-32.

Calle E.W., García M.L., Blasco A., Argente M.J. 2017. Correlated response in early embryonic development in rabbits selected for litter size variability. World Rabbit Sci., 25: 323-327.

Casto-Rebollo C., Argente M.J., García M.L., Blasco A., Ibáñez-Escriche N. 2021a. Immunological genes selected for environmental variance could control the animal resilience. In Proc. 12th World Rabbit Congress, 1-3 July, 2020. Nantes, France.

Casto-Rebollo C., Argente M.J., García M.L., Blasco A., Ibáñez-Escriche N. 2021b. Selection for environmental variance of litter size modified the cecum metabolic profile. 72nd Annual Meeting of European Federation of Animal Science (EAAP), August, Davos, Switzerland.

Cifre P., Baselga M., García-Ximénez F., Vicente J. 1998. Performance of hyperprolific rabbit line. I. Litter size traits. J. Anim. Breed. Genet. 115: 131-138.

Colditz I.G., Hine B.C. 2016. Resilience in farm animals: biology, management, breeding and implications for animal welfare. Anim. Prod. Sci., 56: 1961-1983.

Combes S., Fortun-Lamothe L., Cauquil L., Gidenne T. 2013. Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal, 7: 1429-1439.

Combes S., Massip K., Martin O., Furbeyre H., Cauquil L., Pascal G., Bouchez O., Le Floc’h N., Zemb O., Oswald I.P., Gidenne T. 2017. Impact of feed restriction and housing hygiene conditions on specific and inflammatory immune response, the cecal bacterial community and the survival of young rabbits. Animal, 11: 854-863.

Cotozzolo E., Cremonesi P., Curone G., Menchetti L., Riva F., Biscarini F., Marongiu M.L., Castrica M., Castiglioni B., Miraglia D., Luridiana S., Brecchia G. 2021. Characterization of bacterial microbiota composition along the gastrointestinal tract in rabbits. Animals, 11: 31.

Crowley E.J., King J.M., Wilkinson T., Worgan H.J., Huson K. M., Rose M.T., McEwan N.R. 2017. Comparison of the microbial population in rabbits and guinea pigs by next generation sequencing. PLoS One, 12: e0165779.

Eady S.J., Garreau H., Hurtaud. J. 2004. Heritability of resistance to bacterial infection in commercial meat rabbit populations. In Proc. 8th World Rabbit Congress, 7-10 September, 2004. Puebla, Mexico, 51-56.

Eady S.J., Garreau H., Gilmour A.R. 2007. Heritability of resistance to bacterial infection in meat rabbits. Livest. Sci., 112: 90-98.

El Nagar, A.G., Sánchez J.P., Ragab, M., Mínguez C., Baselga M. 2020. Genetic variability of functional longevity in five rabbit lines. Animal, 14: 1111-1119.

Ferrian S., Blas E., Larsen T., Sánchez J.P., Friggens N.C., Corpa J.M., Baselga M., Pascual J.J. 2013. Comparison of immune response to lipopolysaccharide of rabbit does selected for litter size at weaning or founded for reproductive longevity. Res. Vet. Sci., 94: 518-525.

Ferrian S., Guerrero I., Blas E., García-Diego F.J., Viana D., Pascual J.J., Corpa J.M. 2012. How selection for reproduction or foundation for longevity could have affected blood lymphocyte populations of rabbi does under conventional and heat stress conditions. Vet. Immunol. Immunopathol., 150: 53-60.

Formoso-Rafferty N., Cervantes I., Ibáñez-Escriche N., Gutiérrez J.P. 2016. Correlated genetic trends for production and welfare traits in a mouse population divergently selected for birth weight environmental variability. Animal, 10: 1770-1777.

García M.L., Blasco A., Argente M.J. 2016. Embryologic changes in rabbit lines selected for litter size variability. Theriogenology, 86: 1247-1250.

García M.L., Blasco A., García M.E., Argente M.J. 2018. Correlated response in body condition and energy mobilisation in rabbits selected for litter size variability. Animal, 13: 784-789.

Garreau H., Larzul C., Ducrocq V. 2001. Analyse de longévité de la souche de lapins INRA 1077. In Proc. 9èmes Journées de la Recherche Cunicole. Paris, France, 217-220.

Garreau H., Licois D., Rupp R., Rochambeau, H. de. 2006. Genetic variability of the resistance to epizootic rabbit enteropathy (ERE): new results. In Proc. 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, 15-28.

Garreau H., Bolet G., Larzul C., Robery-Granié, C., Saleil G., San Cristobal M., Bodin L. 2008a. Results of four generations of a canalising selection for rabbit birth weight. Livest. Sci., 119: 55-62.

Garreau H., Eady S.J., Hurtaud J., Legarra A. 2008b. Genetic parameters of production traits and resistance to digestive disorders in a commercial rabbit population. In Proc. 9th World Rabbit Congress, 10-13 June, 2008. Verona, Italy, Vol. 1, 103-107.

Garreau H., Brard S., Hurtaud J., Guitton E., Cauquil L., Licois D., Schwartz B., Combes S, Gidenne T. 2012. Divergent selection for digestive disorders in two commercial rabbit lines: response of crossbred young rabbits to an experimental inoculation of Echerichia coli 0-103. In Proc. 10th World Rabbit Congress, 3-6 September, 2012. Sharm El-Sheikh, Egypt, Vol. 1, 153-157.

Garreau H., Larzul C., Tudela F., Ruesche J., Ducrocq V., Fortun-Lamothe L. 2017. Energy balance and body reserves in rabbit females selected for longevity. World Rabbit Sci., 25: 205-213.

Groen A.F., Steine T., Colleau J.J., Pedersen J., Pribyl J., Reinsch N. 1997.Economic values in dairy cattle breeding, with special reference to functional traits. Report of an EAAP-working group. Livest. Prod.Sci., 49, 1-21.

Gunia M., David I., Hurtaud J., Maupin M., Gilbert H. Garreau H. 2015. Resistance to infectious diseases is a heritable trait in rabbits. J. Anim. Sci. 93: 5631-5638.

Gunia M., David I., Hurtaud J., Maupin M., Gilbert H., Garreau H. 2018. Genetic parameters for resistance to non-specific diseases and production traits measured in challenging and selection environments; application to a rabbit case. Front. Genet., 9: 467.

Hou Y., Zhao D., Liu G., He F., Liu B., Fu S., Hao Y., Zhang W. 2016. Transcriptome analysis of rabbit spleen with hog cholera lapinized virus infection based on high-throughput sequencing technology. Bing Du Xue Bao. 32: 316-23.

Ibáñez-Escriche N., Moreno A., Nieto B., Piqueras P., Salgado C., Gutiérrez J.P. 2008a. Genetic parameters related to environmental variability of weight traits in a selection experiment for weight gain in mice; signs of correlated canalised response. Genet. Sel. Evol., 40: 279-293.

Ibáñez-Escriche N., Varona L., Sorensen D., Noguera J.L. 2008b. A study of heterogeneity of environmental variance for slaughter weight in pigs. Animal, 2: 19-26.

Jacquier V., Estellé J., Schmaltz-Panneau B., Lecardonnel J., Moroldo M., Lemonnier G., Turner-Maier J., Duranthon V., Oswald I.P., Gidenne T., Rogel-Gaillard C. 2015. Genomewide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin. BMC Genomics, 16: 26-44.

Jin D.X., Zou H.W., Liu S.Q., Wang L.Z., Xue B., Wu D., Tian G., Cai J., Yan T.H., Wang Z.S., Peng Q.H. 2018. The underlying microbial mechanism of epizootic rabbit enteropathy triggered by a low fiber diet. Sci. Rep., 8: 12489.

Knap P.W. 2005. Breeding robust pigs. Aust. J. Exp. Agric., 45: 763-773.

Kraimi N., Dawkins M., Gebhardt- Henrich SG., Velge P., Rychlik I., Volf J., Leterrier C. 2019. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol. Behav., 210: 112658.

Larzul C., Gondret F., Combes S., Rochambeau H. de. 2005. Divergent selection on 63 day body weight in the rabbit: response on growth, carcass and muscle traits. Genet. Sel. Evol., 37: 105-122.

Larzul C., Ducrocq V., Tudela F., Juin H., Garreau H. 2014. The length of productive life can be modified through selection: an experimental demonstration in the rabbit. J. Anim. Sci., 92: 2395-2401.

Lenoir G., Maupin M., Leloire C., Garreau H. 2013. Analyse de la longévité des lapines d’une lignée commerciale. In Proc. 15èmes Journées de la Recherche Cunicole. Le Mans, France, 181-184.

Lukefahr S.D., Odi H.B., Atakora J.K.A. 1996. Mass selection for 70-day body weight in rabbits. J. Anim. Sci., 74: 1481-1489.

Mangino M., Roederer M., Beddall M., Nestle K.O., Spector T.D. 2017. Innate and adaptive immune traits are differentially affected by genetic and environmental factors. Nat. Commun., 8: 13850-13858.

Martin R., Nauta A.J., Ben Amor K., Knippels L.M.J., Knol J., Garssen J. 2010. Early Life: Gut microbiota and immune development in infancy. Benef. Microbes, 1: 367-382.

Massip K., Combes S., Cauquil L., Zemb O., Gidenne T. 2012. High throughput 16SDNA sequencing for phylogenetic affiliation of the caecal bacterial community in the rabbit - Impact of the hygiene of housing and of the intake level. In Proc. Symposium on Gut Microbiology. Gut microbiota: friend or foe?.Clermont-Ferrand – Francia, 17-20 june, 2012.

Matics Z.S., Nagy I., Gerencsér Z.S., Radnai I., Gyovai P., Donkó T., Dalle Zotte A., Curik I., Szendrö Z.S. 2014. Pannon breeding program in rabbit at Kaposvár University. World Rabbit Sci., 22: 287-300.

Mattioli S., Dal Bosco A., Combes S., Moscati L., Crotti S., Cartoni Mancinelli A., Cotozzolo E., Castellini C. 2019. Dehydrated alfalfa and fresh grass supply in young rabbits: Effect on performance and caecal microbiota biodiversity. Animals, 9: 341.

Mormede P., Terenina E. 2012. Molecular genetics of the adrenocortical axis and breeding for robustness. Domest. Anim. Endocrinol., 43: 116-131.

Mulder H., Hill W., Vereijken A., Veerkamp R. 2009. Estimation of genetic variation in residual variance in female and male broiler chickens. Animal, 3: 1673-1680.

Neave M.J., Hall R.N., Huang N., McColl K.A., Kerr P., Hoehn M., Taylor J., Strive T. 2018. Robust innate immunity of young rabbits mediates resistance to rabbit hemorrhagic disease caused by Lagovirus Europaeus GI.1 But Not GI.2. Viruses, 10: 512-534.

Nielsen H., Amer P. 2007. An approach to derive economic weights in breeding objectives using partial profile choice experiments. Animal, 1: 1254-1262.

North M.K., Dalle Zotte, A., Hoffman, L.C. 2019. Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon. World Rabbit Sci., 27: 185-198.

Paës C., Gidenne T., Bébin K., Duperray J., Gohier C., Guené-Grand E., Rebours G., Bouchez O., Barilly C., Aymard P., Combes S. 2020. Early introduction of solid feeds: Ingestion level matters more than prebiotic supplementation for shaping gut microbiota. Front. Vet. Sci., 7: 261.

Pickard J.M., Zeng M.Y., Caruso R., Núñez G. 2017. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev., 279: 70-89.

Piles M., Blasco A. 2003. Response to selection for growth rate in rabbits. World Rabbit Sci., 11: 53-62.

Piles M., Garreau H., Rafel O., Larzul C., Ramon J., Ducrocq V. 2006. Survival analysis in two lines selected for reproductive traits. J. Anim. Sci., 84: 1658-1665.

Piles M., Baselga M., Sánchez J.P. 2014. Expected response to different strategies of selection to increase heat tolerance assessed by changes in litter size in rabbit. J. Anim. Sci., 92: 4306-4312.

Piles M., Sánchez J.P. 2019. Use of group records of feed intake to select for feed efficiency in rabbit. J. Anim. Breed. Genet., 136: 474-483.

Pinheiro A., de Sousa-Pereira P., Strive T., Knight K.L., Woof J.M., Esteves P.J., Abrantes J. 2018. Identification of a new European rabbit IgA with a serine-rich hinge region. PLoS ONE, 13: e0201567.

Ragab M., Ramon J., Rafel O., Quintanilla R., Piles M., Sanchez J.P. 2015. Paramètres génétiques des phénotypes liés aux maladies chez le lapin en engraissement nourri avec deux régimes alimentaires différents. In Proc. 16ème Journées de la Recherche Cunicole. Le Mans, France. 69-72.

Read T., Fortun-Lamothe L., Pascal G., Boulch M.L., Cauquil L., Gabinaud B., Bannelier C., Balmisse E., Destombes N., Bouchez O., Gidenne T., Combes S. 2019. Diversity and cooccurrence pattern analysis of cecal microbiota establishment at the onset of solid feeding in young rabbits. Front. Microbiol. 10: 973.

Reiss J., Bridle J.R., Montoya J.M., Woodward G. 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol., 24: 505-514.

Rochambeau H., de la Fuente L.F., Rouvier R., Ouhayoun J. 1989. Sélection sur la vitesse de croissance postsevrage chez le lapin. Genet. Sel. Evol., 21: 527-546.

Sánchez J.P., Baselga M., Peiró R., Silvestre M.A. 2004. Analysis of factors influencing longevity of rabbit does. Livest. Prod. Sci. 90: 227-234.

Sánchez J.P., Baselga M., Ducrocq V. 2006. Genetic and environmental correlations between longevity and litter size in rabbits. J. Anim. Breed. Genet., 123: 180-185.

Sánchez J.P., Theilgaard P., Mínguez C., Baselga M. 2008. Constitution and evolution of a long-lived productive rabbit line. J. Anim. Sci., 86: 515-525.

San Cristobal-Gaudy M., Elsen J.M., Bodin L., Chevalet C. 1998. Prediction of the response to a selection for canalization of a continuous trait in animal breeding. Genet. Sel. Evol., 30: 423-451.

Sauvant D., Martin O. 2010. Robustesse, rusticité, flexibilité, plasticité…les nouveaux critères de qualité des animaux et des systèmes d´elevage: définitions systémique et biologique des différents concepts. INRA Prod. Anim., 23: 5-10.

Savietto D., Cervera C., Blas E., Baselga M., Larsen T., Friggens N.C., Pascual J.J. 2013. Environmental sensitivity differs between rabbit lines selected for reproductive intensity and longevity. Animal, 7: 1969-1977.

Savietto D., Friggens N., Pascual J.J. 2015. Reproductive robustness differs between generalist and specialist maternal rabbit lines: the role of acquisition and allocation of resources. Genet. Sel. Evol., 47: 2.

Shrestha M., Garreau H., Balmisse E., Bed’hom B., David I., Fadeau A., Guitton E., Helloin E., Lenoir G., Maupin M., Robert R., Lantier F., Gunia M. 2018. Estimation of Genetic Parameters of Pasteurellosis Resistance in Crossbred Rabbits. In Proc. 11th World Congress on Genetics Applied to Livestock Production. Auckland, New-Zealand.

Shrestha M., Garreau H., Balmisse E., Bed’hom B., David I., Guitton

E., Lenoir G., Maupin M., Robert R., Lantier F., Gunia M. 2019. Projet RELAPA (génomique pour la REsistance génétique des LApins à la Pasteurellose): paramètres génétiques. In Proc. 18èmes Journées de la Recherche Cunicole. Nantes, France. 77-80.

Schwensow N.I., Detering H., Pederson S., Mazzoni C., Sinclair R., Peacock D., Kovaliski J., Cooke B., Fickel J., Sommer S. 2017. Resistance to RHD virus in wild Australian rabbits: Comparison of susceptible and resistant individuals using a genome wide approach. Mol. Ecol., 26: 4551-4561.

Schnup P., Sansonetti P.J. 2012. Quantitative RT-PCR profiling of the rabbit immune response: assessment of acute Shigella flexneri infection. PLoS One, 7: e36446.

Sobey W.R. 1969. Selection for resistance to myxomatosis in domestic rabbits (Oryctolagus cuniculus). J. Hygiene, 67: 743-754.

Star L., Ellen E.D., Uitdehaag K., Brom F.W.A 2008. A plea to implement robustness into a breeding goal: poultry as an example. J. Agric. Environ. Ethics, 21: 109-125.

Subbian S., O’Brien P., Kushner N.L., Yang G., Tsenova L., Peixoto B., Bandyopadhyay N., Bader J.S., Karakousis P.C., Fallows D., Kaplan G. 2013. Molecular immunologic correlates of spontaneous latency in a rabbit model of pulmonary tuberculosis. Cell Commun Signal., 11: 16.

Suen W.W., Uddin M.J., Prow N.A., Bowen R.A., Hall R.A., Bielefeldt-Ohmann H. 2016. Tissue-specific transcription profile of cytokine and chemokine genes associated with flavivirus control and non-lethal neuropathogenesis in rabbits. Virology, 494: 1-14.

Theilgaard P., Sánchez J.P., Pascual J.J., Berg P., Friggens N.C., Baselga M. 2007. Late reproductive senescence in a rabbit line hyper selected for reproductive longevity, and its association with body reserves. Genet. Sel. Evol., 39: 207-223.

Theilgaard P., Baselga M., Blas, M., Friggens N.C., Cervera C., Pascual J.J. 2009. Differences in productive robustness in rabbits selected for reproductive longevity or litter size. Animal, 3: 637-646.

Uddin MJ, Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. 2015. West Nile virus challenge alters the transcription profiles of innate immune genes in rabbit peripheral blood mononuclear cells. Front. Vet. Sci., 14: 76.

Velasco-Galilea M., Piles M., Viñas M., Rafel O., González-Rodríguez O., Guivernau M., Sánchez J.P. 2018. Rabbit microbiota changes throughout the intestinal tract. Front Microbiol, 9: 2144.

Wang Q., Fue W., Guo Y., Tang Y., Du H., Wang M., Liu A., Li Q., An L., Tian J., Li M., Wu, Z. 2019a. Drinking warm water improves growth performance and optimizes the gut microbiota in early postweaning rabbits during winter. Animals, 9: 34.

Wang G., Huang S., Wang Y., Cai S., Yu H., Liu H., Zeng X., Zhang G., Qiao S. 2019b. Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol Life Sci., 76: 3917-3937.

Wu Z., Zhou H., Li F., Zhang N., Zhu Y. 2018. Effect of dietary fiber levels on bacterial composition with age in the cecum of meat rabbits. Microbiologyopen, 8: e00708.

Youssef Y.M.K., Khalil M.H., Afifi E.A., El-Raffa A.M.E., Zaheds M. 2000. Heritability and non-genetic factors for lifetime production traits in New Zealand White rabbits raised in intensive system of production. In Proc. 7th World Rabbit Congress. 4-7 July, 2000. Valencia, Spain. 497-503.

Zhu Y., Wang C., Li F. 2015. Impact of dietary fiber/starch ratio in shaping caecal microbiota in rabbits. Can. J. Microbiol., 61: 771-784.

Ziadi C., Mocé M.L., Laborda P., Blasco A., Santacreu M.A. 2013. Genetic selection for ovulation rate and litter in rabbits: Estimation of genetic parameters and direct and correlated response. J. Anim. Sci., 91: 3113-3120.

Zomeño C., Hernández P., Blasco A. 2013. Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection. J. Anim. Sci., 91: 4526-4531.