Characterizing meager paratopological groups
DOI:
https://doi.org/10.4995/agt.2011.1698Keywords:
Paratopological group, Baire space, Shift-Baire group, Shift-meager groupAbstract
We prove that a Hausdorff paratopological group G is meager if andonly if there are a nowhere dense subset A G and a countable setC G such that CA = G = AC.Downloads
References
A. Arhangel'skii and M. Tkachenko, Topological groups and related structures, World Sci. Publ., Hackensack, NJ, 2008. https://doi.org/10.2991/978-94-91216-35-0
T. Banakh and O. Ravsky, Oscillator topologies on paratopological groups and related number invariants, Algebraical Structures and their Applications, Kyiv: Inst. Mat. NANU, (2002) 140-152 (arXiv:0810.3028).
A. Bella and V. Malykhin, On certain subsets of a group, Questions Answers Gen. Topology 17, no. 2 (1999), 183-197.
A. Bella, V. Malykhin, On certain subsets of a group. II, Questions Answers Gen. Topology 19, no. 1 (2001), 81-94.
D. Dikranjan, U. Marconi and R. Moresco, Groups with a small set of generators, Appl. Gen. Topol. 4, no. 2 (2003), 327-350. https://doi.org/10.4995/agt.2003.2037
D. Dikranjan and I. Protasov, Every infinite group can be generated by P-small subset, Appl. Gen. Topol. 7, no. 2 (2006), 265-268. https://doi.org/10.4995/agt.2006.1929
I. I. Guran, Topological groups similar to Lindel¨of groups, Dokl. Akad. Nauk SSSR 256, no. 6 (1981), 1305-1307.
I. I. Guran. The Cardinal Invariant of Paratopological Groups, Proc. of II Intern. Algebraical Conf. in Ukraine, Dedicated to the Memory of L.A. Kaluzhnin. - Kyiv-Vinnitsya, 1999. - P.72. (in Ukrainian)
M. Tkachenko, Introduction to topological groups, Topology Appl. 86, no. 3 (1998), 179-231. https://doi.org/10.1016/S0166-8641(98)00051-0
Downloads
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.