Hypercyclic abelian semigroup of matrices on Cn and Rn and k-transitivity (k ≥ 2)
DOI:
https://doi.org/10.4995/agt.2011.1699Keywords:
Hypercyclic, Tuple of matrices, Semigroup, Subgroup, Dense orbit, Transitive, Semigroup actionAbstract
We prove that the minimal number of matrices on Cn required to forma hypercyclic abelian semigroup on Cn is n+1. We also prove that theaction of any abelian semigroup finitely generated by matrices on Cnor Rn is never k-transitive for k 2. These answer questions raised byFeldman and Javaheri.Downloads
References
A. Ayadi and H. Marzougui, Dynamic of Abelian subgroups of GL(n, C): a structure Theorem, Geom. Dedicata 116 (2005), 111–127. http://dx.doi.org/10.1007/s10711-005-9007-2
A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of GL(n, C), Foliations 2005: World Scientific, Hackensack, NJ (2006), 47–69.
F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math., 179, Cambridge University Press, 2009. http://dx.doi.org/10.1017/CBO9780511581113
G. Costakis, D. Hadjiloucas and A. Manoussos, Dynamics of tuples of matrices, Proc. Amer. Math. Soc. 137, no. 3 (2009), 1025–1034. http://dx.doi.org/10.1090/S0002-9939-08-09717-7
G. Costakis, D. Hadjiloucas and A. Manoussos, On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple, J. Math. Anal. Appl. 365 (2010), 229–237. http://dx.doi.org/10.1016/j.jmaa.2009.10.020
N. S. Feldman, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Anal. Appl. 346 (2008), 82–98. http://dx.doi.org/10.1016/j.jmaa.2008.04.027
M. Javaheri, Topologically transitive semigroup actions of real linear fractional transformations , J. Math. Anal. Appl. 368 (2010), 587–603. http://dx.doi.org/10.1016/j.jmaa.2010.03.028
Downloads
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.