A note on separation in AP
DOI:
https://doi.org/10.4995/agt.2003.2046Keywords:
Approach space, Separation property, ReflectionAbstract
It is our aim in this note to take a closer look at some separation axioms in the construct AP of approach spaces and contractions. Whereas lower separation axioms seem to be qualitative, the higher ones seem to have a quantitative nature. Also some characterizations for the corresponding epireectors will be given.
Downloads
References
Adámek, J. Herrlich, H. and Strecker, G. Abstract and Concrete Categories, John Wiley, New York (1990)
Bentley, H. L., Herrlich H. and Lowen-Colebunders E. Convergence , J. Pure Appl. Alg. 68 (1990), pp. 27-45 http://dx.doi.org/10.1016/0022-4049(90)90130-A
Herrlich, H. Topological Structures, Math. Centre Tracts 52 (1974), pp. 59-122
Herrlich, H. Categorical Topology 1971-1981, Proc. 5th Prague Top. Symp. 1981, Heldermann Verlag Berlin (1983), pp. 279-383
Brock, P and Kent, D. On Convergence Approach Spaces, Appl. Cat. Struct. 6 (1998), pp. 117-125 http://dx.doi.org/10.1023/A:1008612905619
Kannan, V. On a Problem of Herrlich, J. Madurai. Univ. 6 (1976), pp. 101-104
Lowen, R. Approach Spaces: a Common Supercategory of TOP and MET, Math. Nachr. 141 (1989), pp. 183-226 http://dx.doi.org/10.1002/mana.19891410120
Lowen, R. Approach Spaces: the Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press (1997)
Lowen, E and Lowen, R. A Quasitopos Containing CONV and MET as full subcategories, Int. J. Math. and Math. Sci., 11(3) (1988), pp. 417-438 http://dx.doi.org/10.1155/S016117128800050X
Marny, T. On Epireective Subcategories of Topological Categories, Gen. Top. Appl. 10 (1979), pp. 175-181 http://dx.doi.org/10.1016/0016-660X(79)90006-0
Robeys, K., Extensions of Products of Metric Spaces, PhD Thesis Universiteit Antwerpen, RUCA (1992)
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.