A contribution to fuzzy subspaces
DOI:
https://doi.org/10.4995/agt.2002.2107Keywords:
Fuzzy connectedness, Fuzzy topology, Q-neighborhoodAbstract
We give a new concept of fuzzy topological subspace, which extends the usual one, and study in it the related concepts of interior, closure and conectedness.
Downloads
References
C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
D. R. Cuttler, I.L. Reilly, A comparison of some Haussdorf notions in fuzzy topological spaces, Computers Math. Applic., Vol. 19, N. 11, (1990) 97-104. https://doi.org/10.1016/0898-1221(90)90152-A
Z. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982), 74-95. https://doi.org/10.1016/0022-247X(82)90255-4
W. Guojun, A new fuzzy compactness defined by fuzzy sets, J. Math. Anal. Appl. 94 (1983), 1-23. https://doi.org/10.1016/0022-247X(83)90002-1
P.M. Pu, Y.M. Liu, Fuzzy Topology. I: Neighborhood stucture of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599. https://doi.org/10.1016/0022-247X(80)90048-7
P.M. Pu, Y.M. Liu, Fuzzy topology. II: Product and quotient spaces, J. Math. Anal. Appl. 77 (1980), 20-37. https://doi.org/10.1016/0022-247X(80)90258-9
A.P. Shostak, Two decades of fuzzy topology: basic ideas, notions and results, Russian Math. Surveys, 44: 6 (1989), 125-186.
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.