Diseño de una metodología para cálculo de energía hidrocinética en estuarios: ejemplo de aplicación con el software IBER
DOI:
https://doi.org/10.4995/ia.2021.16043Palabras clave:
microturbinas, energía hidrocinética, IBERResumen
En el contexto actual de una creciente demanda energética, la energía hidrocinética provocada por la interacción de mareas y caudales de agua en estuarios de los ríos es una de las fuentes con mayor potencial por explotar. En este artículo se presenta el diseño una metodología, que incluye un código que permite automatizar la evaluación de la energía hidrocinética disponible en un estuario, así como el valor de la energía que puede ser aprovechada por turbinas hidrocinéticas de eje vertical a partir de los resultados de simulación obtenidos mediante programas de simulación hidrodinámica. Se ha realizado la integración de dicho código con el software de simulación hidrodinámica IBER, aplicándose la metodología al caso del estuario del río Nalón (Asturias, España).
Descargas
Citas
Álvarez, E.A., Rico-Secades, M., Suárez, D.F., Gutiérrez-Trashorras, A.J., Fernández-Francos, J. 2016. Obtaining energy from tidal microturbines: A practical example in the Nalón River. Applied Energy, 183, 100-112. https://doi.org/10.1016/j.apenergy.2016.08.173
Álvarez, M., Puertas, J., Peña, E., Bermúdez, M. 2017. Two-dimensional dam-break flood analysis in data-scarce regions: The case study of Chipembe dam, Mozambique. Water (Switzerland), 9(6), 432. https://doi.org/10.3390/w9060432
Anta Álvarez, J., Bermúdez, M., Cea, L., Suárez, J., Ures, P., Puertas, J. 2015. Modelización de los impactos por DSU en el río Miño (Lugo). Ingeniería Del Agua, 19(2), 105-116. https://doi.org/10.4995/ia.2015.3648
Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Metodos Numericos Para Calculo y Diseno En Ingenieria, 30(1), 1-10. https://doi.org/10.1016/j.rimni.2012.07.004
Blanco-Marigorta, E., Gharib-yosry, A. 2021. Evaluación de una turbina hidrocinética de eje vertical para su uso en canales. 96, 1-6.
Copernicus Land Monitoring Service. 2018. CORINE Land Cover. Recuperado de https://land.copernicus.eu/pan-european/corineland-cover
Espina-Valdés, R., Fernández-Jiménez, A., Fernández Francos, J., Blanco Marigorta, E., Álvarez-Álvarez, E. 2020. Small cross-flow turbine: Design and testing in high blockage conditions. Energy Conversion and Management, 213(April). https://doi.org/10.1016/j.enconman.2020.112863
Ferreras Moreno, M., Gutiérrez, A., Álvarez, E. 2014. Análisis del potencial de energía hidrocinética en la desembocadura de la ría de ribadesella. Repositorio Institucional - Universidad de Oviedo, 1–13. Recuperado de http://hdl.handle.net/10651/32378
Goward Brown, A.J., Neill, S.P., Lewis, M.J. 2017. Tidal energy extraction in three-dimensional ocean models. Renewable Energy, 114, 244-257. https://doi.org/10.1016/j.renene.2017.04.032
Huckerby, J., Jeffrey, J., Sedgwick, J., Jay, B., Finlay, L., Ocean Energy System (OES). 2012. An International vision for Ocean Energy - Version II. Ocean Energy Systems Implementing Agreeement. Recuperado de http://www.policyandinnovationedinburgh.org/uploads/3/1/4/1/31417803/oes_booklet_fa_print_08_10_2012.pdf
IGN. 2020. Instituto Geográfico Nacional. Recuperado de https://www.ign.es/web/ign/portal
Navionics. 2020. ChartViewer. Recuperado de https://webapp.navionics.com/?lang=es#boating@6&key=cpvhGnppa%40
Neill, S.P., Angeloudis, A., Robins, P.E., Walkington, I., Ward, S.L., Masters, I., Lewis, M.J., Piano, M., Avdis, A., Piggott, M.D., Aggidis, G., Evans, P., Adcock, T.A.A., Židonis, A., Ahmadian, R., Falconer, R. 2018. Tidal range energy resource and optimization – Past perspectives and future challenges. Renewable Energy, 127, 763-778. https://doi.org/10.1016/j.renene.2018.05.007
Rourke, F.O., Boyle, F., Reynolds, A. 2010. Tidal energy update 2009. Applied Energy, 87(2), 398-409. https://doi.org/10.1016/j.apenergy.2009.08.014
Saini, G., Saini, R.P. 2019. A review on technology, configurations, and performance of cross-flow hydrokinetic turbines. International Journal of Energy Research, 43(13), 6639-6679. https://doi.org/10.1002/er.4625
Sanz-Ramos, M., Bladé, E., Escolano, E. 2020. Optimización del cálculo de la Vía de Intenso Desagüe con criterios hidráulicos. Ingeniería Del Agua, 24(3), 203. https://doi.org/10.4995/ia.2020.13364
Sørnes, K. 2010. Small-scale Water Current Turbines for River Applications. Recuperado de https://www.zero.no
Sutherland, G., Foreman, M., Garrett, C. 2007. Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(2), 147-157. https://doi.org/10.1243/09576509JPE338
van Ruijven, B.J., De Cian, E., Sue Wing, I. 2019. Amplification of future energy demand growth due to climate change. Nature Communications, 10(1), 1-12. https://doi.org/10.1038/s41467-019-10399-3
Xu, X., Wei, Z., Ji, Q., Wang, C., Gao, G. 2019. Global renewable energy development: Influencing factors, trend predictions and countermeasures. Resources Policy, 63, 101470. https://doi.org/10.1016/j.resourpol.2019.101470
Yuce, M.I., Muratoglu, A. 2015. Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 43, 72-82. https://doi.org/10.1016/j.rser.2014.10.037
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional