Integrating Tier-1 module suppliers in car sequencing problem
DOI:
https://doi.org/10.4995/ijpme.2021.14985Keywords:
car sequencing, module assembly, synchronous assemblyAbstract
The objective of this study is to develop a car assembly sequence that is mutually agreed between car manufacturers and Tier-1 module suppliers such that overall modular supply chain efficiency is improved. In the literature so far, only constraints of car manufacturers have been considered in the car sequencing problem. However, an assembly sequence from car manufacturer imposes a module assembly sequence on Tier-1 module suppliers since their assembly activities are synchronous and in sequence with assembly line of that car manufacturer. An imposed assembly sequence defines a certain demand rate for Tier-1 module suppliers and has significant impacts on operational cost of these suppliers which ultimately affects the overall modular supply chain efficiency. In this paper, a heuristic approach has been introduced to generate a supplier cognizant car sequence which does not only provide better operational conditions for Tier-1 module suppliers, but also satisfies constraints of the car manufacturer.
Downloads
References
Benoist, T., Gardi, F., Megel, R., Nouioua, K. 2011. LocalSolver 1.x: a black-box local-search solver for 0-1 programming. 4OR - A Quarterly Journal of Operations Research, 9(299). https://doi.org/10.1007/s10288-011-0165-9
Boysen, N., Fliedner, M., Scholl, A. 2009. Sequencing mixed-model assembly lines: survey, classification and model critique. European Journal of Operational Research, 192, 349-373. https://doi.org/10.1016/j.ejor.2007.09.013
Doran, D. 2002. Manufacturing for synchronous supply: a case study of Ikeda Hoover Ltd. Integrated Manufacturing Systems, 13(1), 18-24. https://doi.org/10.1108/09576060210411477
Drexl, A., Kimms, A. 2001. Sequencing JIT mixed-model assembly lines under station-load and part-usage constraints. Management Science, 47,(3), 480-491. https://doi.org/10.1287/mnsc.47.3.480.9777
Estellon, B., Gardi, F. 2006. Car sequencing is NP-hard: a short proof. Journal of the Operational Research Society, 64, 1503-1504. https://doi.org/10.1057/jors.2011.165
Estellon, B., Gardi, F., Nouioua, K. 2006. Large neighborhood improvements for solving car sequencing problems. RAIRO - Operations Research, 40(4), 355-379. https://doi.org/10.1051/ro:2007003
Estellon, B., Gardi, F., Nouioua, K. 2008. Two local search approaches for solving real-life car sequencing problems. European Journal of Operational Research, 191(3), 928-944. https://doi.org/10.1016/j.ejor.2007.04.043
Fredriksson, P., Gadde, L.E. 2005. Flexibility & rigidity in customization and build-to-order production. Science Direct Industrial Marketing Management, 34, 695-705. https://doi.org/10.1016/j.indmarman.2005.05.010
Gagne, C., Gravel, M., Price, W. 2006. Solving real car sequencing problems with ant colony optimization. European Journal of Operational Research, 174(3), 1427-1448. https://doi.org/10.1016/j.ejor.2005.02.063
Gottlieb, J., Puchta, M., Solnon., C. 2003. A study of greedy, local search and ant colony optimization approaches for car sequencing problems. In Applications of Evolutionary Computing, Lecture Notes in Computer Science, 2611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36605-9_23
Hellingrath, B. 2008. Key principles of flexible production and logistics networks. Build to Order: The Road to the 5-Day Car, Springer-Verlag, London, 177-180. https://doi.org/10.1007/978-1-84800-225-8_10
Larsson, A. 2002. The development and regional significance of the automotive industry: supplier parks in Western Europe. International Journal of Urban and Regional Research, 26(4), 767-784. https://doi.org/10.1111/1468-2427.00417
Monden, Y. 1998. Toyota production systems: an integrated approach to just-in-time, 3rd edition. Industrial Engineering & Management Press, Norcoss
Niemann, J., Seisenberger, S., Schlegel, A., Putz, M. 2019. Development of a method to increase flexibility and changeability of supply contracts in the automotive industry. 52nd CIRP Conference on Manufacturing Systems, Ljubljana, Slovenia, June 12-14. https://doi.org/10.1016/j.procir.2019.03.045
Parrello, B.D., Kabat, W.C., Wos, L. 1986. Job-shop scheduling using automated reasoning: a case study of the car-sequencing problem. Journal of Automated Reasoning, 2(1), 1-42. https://doi.org/10.1007/BF00246021
Regin, J.C., Puget, J.F. 1997. A filtering algorithm for global sequencing constraints. In: Smolka G. (eds) Principles and Practice of Constraint Programming-CP97. Lecture Notes in Computer Science, 1330. Springer, Heidelberg. https://doi.org/10.1007/BFb0017428
Solnon, C., Cung, V.D., Nguyen A., Artigues, C. 2008. The car sequencing problem: overview of state-of-the-art methods and industrial casestudy of the ROADEEF'2005 challenge problem. European Journal of Operational Research, 191, 912-927. https://doi.org/10.1016/j.ejor.2007.04.033
Downloads
Published
How to Cite
Issue
Section
License
This work as of Vol. 11 Iss. 2 (2023) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License