Estrategia para la implementación del control jerárquico en microrredes

Autores/as

DOI:

https://doi.org/10.4995/riai.2022.15741

Palabras clave:

Microredes, Convertidores de Fuente de Tensión, Control Difuso, Control Jerárquico

Resumen

Las microrredes son fundamentales ya que permiten la integración local de unidades de generación basadas en fuentes renovables, sistemas de almacenamiento y usuarios de energía eléctrica. Sin embargo, para un correcto funcionamiento, el control de la microrred es un aspecto fundamental, por lo que en este trabajo se propone, de forma didáctica, una estrategia de implementación sencilla para aquellos casos en los que no se disponga de la descripción matemática o modelo del sistema. El aporte del trabajo consiste en la propuesta de una estrategia detallada para el diseño del control jerárquico de convertidores de fuente de tensión basada en matemática difusa, que considera el funcionamiento de la microrred como aislada o conectada a la red principal. La implementación propuesta y el análisis de los resultados obtenidos muestran que la estrategia de control jerárquico propuesta tiene un desempeño satisfactorio. Además, esta estructura de diseño es escalable, robusta, aplicable en sistemas lineales o no lineales y rápidamente implementable en sistemas físicos

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Lorena Castro, Universidad Tecnológica de Pereira

Programa de Ingeniería Eléctrica

Maximiliano Bueno-López, Universidad del Cauca

Profesor asociado del Departamento de Electrónica, Instrumentación y Control.

Ingeniero electricista y magíster en ingeniería eléctrica de la Universidad Tecnológica de Pereira. Doctor de la Universidad Nacional Autónoma de México. Miembro del grupo de Investigación en Automática Industrial.

Juan Mora-Flórez, Universidad Tecnológica de Pereira

Profesor titular del programa de ingeniería eléctrica.

Ingeniero electricista y magíster en potencia eléctrica de la Universidad Industrial de Santander. Doctor de la Universidad de Girona. Miembro de los grupos Investigación en Conceptos Emergentes en Energía Eléctrica (ICE3), y Planeamiento en Sistemas Eléctricos (GPE).

Citas

Akagi, H., Watanabe, E. H., Aredes, M., 2011. Instantaneous power theory and applications to power conditioning. John Wiley and Sons, New York, NY, USA

Al Badwawi, R., Issa, W. R., Mallick, T. K., Abusara, M., 2019. Supervisorycontrol for power management of an islanded ac microgrid using a frequencysignalling-based fuzzy logic controller. IEEE Transactions on SustainableEnergy 10 (1), 94 104. https://doi.org/10.1109/TSTE.2018.2825655

Awal, M. A., Yu, H., Tu, H., Lukic, S. M., Husain, I., 2020. Hierarchical control for virtual oscillator based grid-connected and islanded microgrids. IEEE Transactions on Power Electronics 35 (1), 988-1001. https://doi.org/10.1109/TPEL.2019.2912152

Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., 2018. Performance impro-vement of multi-der microgrid for small- and large-signal disturbances andnonlinear loads: Novel complementary control loop and fuzzy controller ina hierarchical droop-based control scheme. IEEE Systems Journal 12 (1),444-451. https://doi.org/10.1109/JSYST.2016.2580617

Bordons, C., Garcia-Torres, F., Ridao, M., 2020. Control predictivo en microrredes interconectadas y con veh'ıculos electricos. Revista Iberoamericana de Automatica e Informatica industrial 17 (3), 239-253. https://doi.org/10.4995/riai.2020.13304

Castro, L., Bravo Lopez, M. F., Rios Ocampo, M. , Garcıa Ceballos, C. A., Ramırez Loaiza, D. A., Perez-Londono, S., Garces, A., Bueno-Lopez, M., Mora-Florez, J., 2021. Control jerarquico en micro-redes AC. Vol. 1. UTP editorial. URL: https://hdl.handle.net/11059/13701

Castro, L., Lopez, M. B., Mora-Florez, J., 2019a. Adjustment strategy of afuzzy control to integrate renewable sources and storage devices in micro-grids. In: 2019 IEEE Workshop on Power Electronics and Power QualityApplications (PEPQA). pp. 1-6. https://doi.org/10.1109/PEPQA.2019.8851561

Castro, L., Perez-Londoño, S., Mora-Florez, J., 2019b. Application of fuzzylogic based control in micro-grids. In: 2019 FISE-IEEE/CIGRE Conference- Living the energy Transition (FISE/CIGRE). pp. 1-8. https://doi.org/10.1109/FISECIGRE48012.2019.8985002

Chandorkar, M. C., Divan, D. M., Adapa, R., Jan 1993. Control of parallel connected inverters in standalone ac supply systems. IEEE Transactions on Industry Applications 29 (1), 136-143. https://doi.org/10.1109/28.195899

Farrokhabadi, M., Canizares, C. A., Simpson-Porco, J. W., Nasr, E., Fan, L., Mendoza-Araya, P., Tonkoski, R., Tamrakar, U., Hatziargyriou, N. D., Lagos, D., Wies, R. W., Paolone, M., Liserre, M., Meegahapola, L., Kabalan, M., Hajimiragha, A. H., Peralta, D., Elizondo, M., Schneider, K. P., Tuffner, F., Reilly, J. T., 2019. Microgrid stability definitions, analysis, and examples. IEEE Transactions on Power Systems, 1-1. https://doi.org/10.1109/TPWRS.2019.2925703

Haiyun, W., Zuochun, Z., Qingfang, Y., Wei, B., Guoqing, H., Guanghui, L., Kaihui, F., Dec. 2013. A Hierarchical Control of Microgrid Based On Droop Controlled Voltage Source Converter. In: IEEE PES AsiaPacific P. En. Eng. Conf. (APPEEC). Hong Kong, China, pp. 1-4, https://doi.org/10.1109/APPEEC.2013.6837176

Heydari, R., Dragicevic, T., Blaabjerg, F., 2019. High-bandwidth secondaryvoltage and frequency control of vsc-based ac microgrid. IEEE Transactionson Power Electronics 34 (11), 11320-11331. https://doi.org/10.1109/TPEL.2019.2896955

Heyderi, R., Alhasheem, M., Dragicevic, T., Blaabjerg, F., Sep. 2018. Model Predictive Control Approach for Distributed Hierarchical Control of VSCBased Microgrids. In: 2018 20th Eur. Conf. P. Electron. Appl. (EPE'18 ECCE Europe). pp. 1-8.

Hou, X., Sun, Y., Lu, J., Zhang, X., Koh, L. H., Su, M., Guerrero, J. M., 2018.Distributed hierarchical control of ac microgrid operating in grid-connected,islanded and their transition modes. IEEE Access 6, 77388-77401. https://doi.org/10.1109/ACCESS.2018.2882678

Huang, L., Xin, H., Wang, Z., Zhang, L., Wu, K., Hu, J., 2019. Transient stabi-lity analysis and control design of droop-controlled voltage source conver-ters considering current limitation. IEEE Transactions on Smart Grid 10 (1),578-591. https://doi.org/10.1109/TSG.2017.2749259

Hussain, A., Arif, S. M., Aslam, M., 2017. Emerging renewable and sustainableenergy technologies: State of the art. Renewable and Sustainable EnergyReviews 71, 12 - 28.URL:http://www.sciencedirect.com/science/article/pii/S1364032116310863 https://doi.org/10.1016/j.rser.2016.12.033

Kerdphol, T., Watanabe, M., Hongesombut, K., Mitani, Y., 2019. Self-adaptivevirtual inertia control-based fuzzy logic to improve frequency stability ofmicrogrid with high renewable penetration. IEEE Access 7, 76071-76083. https://doi.org/10.1109/ACCESS.2019.2920886

Loukil, K., Abbes, H., Abid, H., Abid, M., Toumi, A., 2020. Design andimplementation of reconfigurable mppt fuzzy controller for photovoltaicsystems. Ain Shams Engineering Journal 11 (2), 319 - 328. URL:http://www.sciencedirect.com/science/article/pii/S2090447919301388 https://doi.org/10.1016/j.asej.2019.10.002

Montoya, O. D., Garces, A., Serra, F. M., 2018. Ders integration in microgridsusing vscs via proportional feedback linearization control: Supercapacitorsand distributed generators. Journal of Energy Storage 16, 250-258. URL: http://www.sciencedirect.com/science/article/pii/S2352152X17303912 https://doi.org/10.1016/j.est.2018.01.014

Perez-Londoño, S., Garces, A., Bueno-Lopez, M., Mora-Florez, J., 2020. Modelizado de componentes en micro -redes AC. Vol. 1. UTP editorial. https://doi.org/10.22517/9789587225068

Rakshit, S., Maity, J., 2018. Fuzzy logic controlled ́Cuk converter. In: 2018 In-ternational Conference on Communication and Signal Processing (ICCSP).pp. 0771-0775. https://doi.org/10.1109/ICCSP.2018.8524168

Roselyn, J. P., Chandran, C. P., Nithya, C., Devaraj, D., Venkatesan, R., Gopal,V., Madhura, S., 2020. Design and implementation of fuzzy logic basedmodified real-reactive power control of inverter for low voltage ride throughenhancement in grid connected solar pv system. Control EngineeringPractice 101, 104494. URL:http://www.sciencedirect.com/science/article/pii/S0967066120301179 https://doi.org/10.1016/j.conengprac.2020.104494

Sen, S., Kumar, V., 2018. Microgrid control: A comprehensive survey. AnnualReviews in Control 45, 118 - 151. URL:http://www.sciencedirect.com/science/article/pii/S1367578818300373 https://doi.org/10.1016/j.arcontrol.2018.04.012

Swathy, K., Jantre, S., Jadhav, Y., Labde, S. M., Kadam, P., 2018. Design andhardware implementation of closed loop buck converter using fuzzy logiccontroller. In: 2018 Second International Conference on Electronics, Com-munication and Aerospace Technology (ICECA). pp. 175-180. https://doi.org/10.1109/ICECA.2018.8474570

Teodorescu, R., Liserre, M., Rodriguez, P., 2011. Grid converters for photovoltaic and wind power systems. John Wiley and Sons, New York, NY, USA. https://doi.org/10.1002/9780470667057

Descargas

Publicado

11-02-2022

Cómo citar

Castro, L., Bueno-López, M. y Mora-Flórez, J. (2022) «Estrategia para la implementación del control jerárquico en microrredes», Revista Iberoamericana de Automática e Informática industrial, 19(3), pp. 254–264. doi: 10.4995/riai.2022.15741.

Número

Sección

Artículos