Gemelos Digitales en la Industria de Procesos

Autores/as

  • César de Prada Universidad de Valladolid https://orcid.org/0000-0001-6700-9067
  • Santos Galán-Casado Universidad Politécnica de Madrid
  • Jose L. Pitarch Universitat Politècnica de València
  • Daniel Sarabia Universidad de Burgos
  • Anibal Galán Universidad de Valladolid
  • Gloria Gutiérrez Universidad de Valladolid

DOI:

https://doi.org/10.4995/riai.2022.16901

Palabras clave:

Gemelos digitales, Modelado y toma decisiones en sistemas complejos, Soporte al operador humano, Simulación, Control y optimización en tiempo real, Estimación de estados y parámetros, Seguimiento y evaluación del funcionamiento

Resumen

Los gemelos digitales son plantas virtuales dotadas de una arquitectura y funcionalidades que les convierten en herramientas útiles para mejorar muchos aspectos de la operación de los procesos, desde el control a la optimización de los mismos. No obstante, para ser usados en tiempo real como herramientas eficaces de toma de decisiones, hay varios problemas abiertos que requieren investigación adicional, entre ellos los relativos a la actualización de los modelos en tiempo real y a la consideración explícita de las incertidumbres presentes en los modelos y los procesos. Este artículo discute su arquitectura y papel en el contexto de Industria 4.0, y recoge y analiza una experiencia concreta referida a la red de hidrogeno de una refinería de petróleo que ilustra las posibilidades de utilización industrial de los gemelos digitales, así como los problemas abiertos que presenta su implantaciónen la industria de procesos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

César de Prada, Universidad de Valladolid

Departamento de Ingeniería de Sistemas y Automática ; Instituto de Procesos Sostenibles (IPS)

Santos Galán-Casado, Universidad Politécnica de Madrid

Departamento de Ingeniería Química Industrial y del Medio Ambiente

Jose L. Pitarch, Universitat Politècnica de València

Instituto Universitario de Automática e Informática Industrial (ai2)

Daniel Sarabia, Universidad de Burgos

Departamento de Ingeniería Electromecánica ; Instituto de Procesos Sostenibles (IPS)

Anibal Galán, Universidad de Valladolid

Departamento de Ingeniería de Sistemas y Automática ; Instituto de Procesos Sostenibles (IPS)

Gloria Gutiérrez, Universidad de Valladolid

Departamento de Ingeniería de Sistemas y Automática ; Instituto de Procesos Sostenibles (IPS)

Citas

Allgöwer, F., Badgwell, T.A., Qin, J.S., Rawlings, J.B., Wright, S.J. 1999. Nonlinear Predictive Control and Moving Horizon Estimation "" An In-troductory Overview BT. In: Frank, P.M. (Ed.), Advances in Control. Springer London, London, pp. 391-449. DOI: 10.1007/978-1-4471-0853-5_19 https://doi.org/10.1007/978-1-4471-0853-5_19

Arora, N., Biegler, L.T., 2001. Redescending estimators for data reconcilia-tion and parameter estimation. Comput. Chem. Eng. 25, 1585-1599. https://doi.org/10.1016/S0098-1354(01)00721-9

Aveva, 2020. Enabling the Digital Twin through Unified Engineering [WWW Document]. Blog. URL: https://www.aveva.com/en/perspectives/blog/enabling-the-digital-twin-through-unified-engineering/ (accedido 2.7.22).

Bernardo, J. M., 2011. Modern Bayesian Inference: Foundations and Objec-tive Methods. In: Bandyopadhyay, P. S. et al. (Ed.) Handbook of the Phi-losophy of Science, Philosophy of Statistics, North-Holland, 7, pp 263-306. DOI: 10.1016/B978-0-444-51862-0.50008-3 https://doi.org/10.1016/B978-0-444-51862-0.50008-3

Birge, J. R., Louveaux, F., 2011. Introduction to stochastic Programming. Springer Verlag, Springer Series in Operations Research and Financial Engineering. https://doi.org/10.1007/978-1-4614-0237-4

Boss, B., Malakuti, S., Lin, S.W., Usländer, T., Clauer, E., Hoffmeister, M., Stojanovic, L., 2020. Digital Twin and Asset Administration Shell Con-cepts and Application in the Industrial Internet and Industrie 4.0. URL https://www.plattform-i40.de/IP/Navigation/EN/Home/home.html

Bröcker, S., Benfer, R., Bortz, M., Engell, S., Knösche, C., Kröner, A., 2021. Process Simulation - Fit for the future? DECHEMA e.V.

Darby, M. L., Nikolaou, M., Jones, J., Nicholson, D., 2011. RTO: An over-view and assessment of current practice. Journal of Process Control, 21, 874-884. DOI: 10.1016/j.jprocont.2011.03.009 https://doi.org/10.1016/j.jprocont.2011.03.009

de Prada, C., Sarabia, D., Gutierrez G., Gomez, E., Marmol, S., Sola, M., Pascual, C., Gonzalez, R., 2017. Integration of RTO and MPC in the hydrogen network of a petrol refinery. Processes, 5(3). DOI: 10.3390/pr5010003 https://doi.org/10.3390/pr5010003

del Rio Chanona, E. A., Petsagkourakis, P., Bradford, E., Graciano, J. A., & Chachuat, B., 2021. Real-time optimization meets Bayesian optimization and derivative-free optimization: A tale of modifier adaptation. Computers & Chemical Eng., 147, 107249. DOI:0.1016/j.compchemeng.2021.107249 https://doi.org/10.1016/j.compchemeng.2021.107249

Engell, S., Harjunkoski, I., 2012. Optimal operation: Scheduling, advanced control and their integration. Computers & Chemical Engineering, 47, 121-133. DOI: 10.1016/j.compchemeng.2012.06.039 https://doi.org/10.1016/j.compchemeng.2012.06.039

Fracaro, S. G., Glassey, J., Bernaerts, K., Wilk, M., 2022. Immersive technologies for the training of operators in the process industry: A Systematic Literature Review. Computers & Chemical Engineering, 107691. https://doi.org/10.1016/j.compchemeng.2022.107691

Galán, A.S., 2021. Simulation and optimization methods as decision support tools for operation of oil refinery hydrogen networks. Tesis Doctoral, Universidad de Valladolid. DOI: 10.35376/10324/46435 https://doi.org/10.35376/10324/46435

Galan, A., de Prada, C., Gutierrez, G., Sarabia, D., Gonzalez, R., 2019. Predictive Simulation Applied to Refinery Hydrogen Networks for Oper-ators' Decision Support. IFAC"Papers On Line 52, 862-867. DOI: 10.1016/j.ifacol.2019.06.170 https://doi.org/10.1016/j.ifacol.2019.06.170

Galan, A., de Prada, C., Gutierrez, G., Sarabia, D., Gonzalez, R., 2021, Real-time reconciled simulation as decision support tool for process operation. Journal of Process Control, 100, 41-64. DOI: 10.1016/j.jprocont.2021.02.003 https://doi.org/10.1016/j.jprocont.2021.02.003

Ge, Z., Song, Z., Ding, S. X., Huang, B., 2017. Data mining and analytics in the process industry: The role of machine learning. IEEE Access, 5, 20590-20616. DOI: 10.1109/ACCESS.2017.2756872 https://doi.org/10.1109/ACCESS.2017.2756872

Grieves, M., 2019. Virtually Intelligent Product Systems: Digital and physical twins. In: S. Flumerfelt, et al. (Ed.), Complex systems engineering: Theo-ry and Practice. American Institute of Aeronautics and Astronautics, Ch. 7, pp. 175-200. DOI: 10.2514/5.9781624105654.0175.0200 https://doi.org/10.2514/5.9781624105654.0175.0200

Jiang, S., Xu, Z., Kamran, M., Zinchik, S., Paheding, S., McDonald, A. G., Bar-Ziv, E., Zavala, V. M., 2021. Using ATR-FTIR spectra and convolu-tional neural networks for characterizing mixed plastic waste. Computers & Chemical Engineering, 155, 107547. DOI: 10.1016/j.compchemeng.2021.107547 https://doi.org/10.1016/j.compchemeng.2021.107547

KBC, 2021. Digitalization Manifesto. Now is the Time. URL https://www.kbc.global/uploads/files/whitepapers/KBC%20Digitalization%20Manifesto_US.pdf

Lee, J. H., Shin, J., Realff, M. J., 2018. Machine learning: Overview of the recent progresses and implications for the process systems engineering field. Computers & Chemical Engineering, 114, 111-121. DOI: 10.1016/j.compchemeng.2017.10.008 https://doi.org/10.1016/j.compchemeng.2017.10.008

Linderoth, L., Wright, S., 2003. Decomposition Algorithms for Stochastic Programming on a Computational Grid. Computational Optimization and Applications, 24. 207-250. DOI: 10.1023/A:1021858008222 https://doi.org/10.1023/A:1021858008222

Marchetti, A.G., François, G., Faulwasser, T., Bonvin, D., 2016. Modifier Adaptation for Real-Time Optimization-Methods and Applications. Pro-cesses, 4, 55. DOI: 10.3390/pr4040055 https://doi.org/10.3390/pr4040055

Masooleh, L. S., Arbogast, J. E., Seider, W. D., Oktem, U., Soroush, M., 2022. Distributed state estimation in large-scale processes decomposed into observable subsystems using community detection. Computers & Chemical Engineering, 156, 107544. DOI: 10.1016/j.compchemeng.2021.107544 https://doi.org/10.1016/j.compchemeng.2021.107544

Mesbah, A., 2018. Stochastic model predictive control with active uncertain-ty learning: A survey on dual control. Annual Reviews in Control, 45, 107-117. DOI: 10.1016/j.arcontrol.2017.11.001 https://doi.org/10.1016/j.arcontrol.2017.11.001

Microsoft Corporation, 2020. Azure Digital Twins. URL:https://azure.microsoft.com/es-es/services/digital-twins/#overview (accedido 2.7.22)

Oh, T.H., Souza, L.F.S., Lee, J.M., 2021. Applying Digital Application Platform to Optimize Steam Methane Reforming Process, in: 2021 21st Inter. Conf. on Control, Automation and Systems (ICCAS). pp. 388-393. https://doi.org/10.23919/ICCAS52745.2021.9650053

Oliveira-Silva, E., de Prada, C., Navia, D., 2021. Dynamic optimization integrating modifier adaptation using transient measurements. Computers & Chemical Engineering, 149, 107282. DOI: 10.1016/j.compchemeng.2021.107282 https://doi.org/10.1016/j.compchemeng.2021.107282

Palacín, C. G., Vilas, C., Alonso, A. A., Pitarch, J. L., de Prada, C., 2020. Closed-Loop Scheduling in a Canned Food Factory, 53-2, 10791-10796. In IFAC-PapersOnLine. 21st IFAC World Congress. https://doi.org/10.1016/j.ifacol.2020.12.2863

Pfeiffer, B.-M., Oppelt, M., Leingang, C., 2019. Evolution of a Digital Twin for a Steam Cracker, in: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). pp. 467-474. DOI: 10.1109/ETFA.2019.8869449 https://doi.org/10.1109/ETFA.2019.8869449

Pitarch, J. L., Sala, A., de Prada, C., 2019. A systematic grey-box modeling methodology via data reconciliation and SOS constrained regression. Pro-cesses, 7(3), 170. DOI: 10.3390/pr7030170 https://doi.org/10.3390/pr7030170

Qin, S., Jin, T., Van Lehn, R. C., Zavala, V. M., 2021. Predicting Critical Micelle Concentrations for Surfactants Using Graph Convolutional Neu-ral Networks. The Journal of Physical Chemistry B, 125(37), 10610-10620. DOI: 10.1021/acs.jpcb.1c05264 https://doi.org/10.1021/acs.jpcb.1c05264

Reinbold, P. A., Kageorge, L. M., Schatz, M. F., Grigoriev, R. O., 2021. Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression. Nature communica-tions, 12(1), 1-8. DOI: 10.1038/s41467-021-23479-0 https://doi.org/10.1038/s41467-021-23479-0

Sansana, J., Joswiak, M. N., Castillo, I., Wang, Z., Rendall, R., Chiang, L, H., Reis, M. S., 2021. Recent trends on hybrid modeling for Industry 4.0. Computers & Chemical Engineering, 151, 107365. DOI: 10.1016/j.compchemeng.2021.107365 https://doi.org/10.1016/j.compchemeng.2021.107365

Sarabia, D., de Prada, C., Gomez, E., Gutierrez, G, Cristea, S., Sola, J.M., Gonzalez, R., 2012. Data reconciliation and optimal management of hy-drogen networks in a petrol refinery. Control Engineering Practice, 20(4), 343-354. DOI: 10.1016/j.conengprac.2011.06.009 https://doi.org/10.1016/j.conengprac.2011.06.009

Shafto, M.., Conory, M.., Dolye, R., Glaessgen, E., Kemp, C., LeMoigne J., Wang, L., 2010. DRAFT Modeling, Simulation, Information Technology & Processing Technology Area 11.

Smallwood, R. D., Sondik, E. J., 1973. The optimal control of partially observable Markov processes over a finite horizon. Operations research, 21(5), 1071-1088. DOI: 10.1287/opre.21.5.1071 https://doi.org/10.1287/opre.21.5.1071

Yokogawa, 2022. Digital Twin. URL: https://www.yokogawa.com/solutions/solutions/digitaltransformation/digital-twin/#Resources__White-Papers (accedido 2.7.22).

Descargas

Publicado

23-03-2022

Cómo citar

de Prada, C., Galán-Casado, S. ., Pitarch, J. L. ., Sarabia, D. ., Galán, A. . y Gutiérrez, G. . (2022) «Gemelos Digitales en la Industria de Procesos», Revista Iberoamericana de Automática e Informática industrial, 19(3), pp. 285–296. doi: 10.4995/riai.2022.16901.

Número

Sección

Sección especial: “Técnicas de control y optimización como solución a problemas de la sociedad”

Datos de los fondos