Mejoramiento de la navegabilidad de un robot móvil considerando el consumo energético de su brazo

Autores/as

  • Jesús M. García Universidad Nacional Experimental del Táchira https://orcid.org/0000-0001-5466-9429
  • José Moncada Universidad Nacional Experimental del Táchira
  • Juan Rodríguez Universidad Nacional Experimental del Táchira

DOI:

https://doi.org/10.4995/riai.2022.17806

Palabras clave:

Consumo de energía, Navegabilidad, Robot skid steer, Deslizamiento hacia abajo, Estabilidad al vuelco, Direccionamiento del vehículo

Resumen

Este artículo describe el desarrollo de una estrategia para mejorar la navegabilidad de un robot móvil Skid Steer cuando se desplaza sobre superficies inclinadas, utilizando su brazo mientras consume la menor cantidad de energía. Para ello se desarrolló un modelo del consumo energético del brazo con 2 grados de libertad, el cual fue validado mediante el software MSC ADAMS. Luego, se diseñó la estrategia que permite al robot posicionar su brazo con movimientos compensatorios o con el efector final en contacto con el suelo para evitar vuelcos y deslizamientos, además de mantener el direccionamiento, mientras se disminuye el consumo de energía que provoca la maniobra. La estrategia se evaluó mediante simulación y experimentos con el robot real, determinando su efectividad de acuerdo a los parámetros definidos en su diseño e implementación.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jesús M. García, Universidad Nacional Experimental del Táchira

Laboratorio de Prototipos

José Moncada, Universidad Nacional Experimental del Táchira

Laboratorio de Prototipos

Juan Rodríguez, Universidad Nacional Experimental del Táchira

Laboratorio de Prototipos

Citas

Abo-Shanab, R., & Sepehri, N. (2005). Tip-over stability of manipulator-like mobile hydraulic machines. Journal of Dynamic Systems, Measurement and Control , 127 (2), 295-301. https://doi.org/10.1115/1.1898239

Acosta, J., Andaluz, V., González-de-Rivera, G., & Garrido, J. (2019). Energy-saver mobile manipulator based on numerical methods. Electronics , 8 (1100), 1-26. https://doi.org/10.3390/electronics8101100

Beck, C., Miro, J., & Dissanayake, G. (2009). Trajectory optimisation for increased stability of mobile robots operating in uneven terrains. IEEE International Conference on Control and Automation, (págs. 1913-1919). Christchurch. https://doi.org/10.1109/ICCA.2009.5410513

Ben-Tzvi, P. (2010). Experimental validation and field performance metrics of a hybrid mobile robot mechanism. Journal of Field Robotics , 27 (3), 250-267. https://doi.org/10.1002/rob.20337

Budynas, R., & Nisbett, K. (2008). Diseño en Ingeniería Mecánica de Shigley (8va edición ed.). México: McGraw-Hil/Interamericana Editores.

Choi, B., Park, G., & Lee, Y. (2018). Practical control of a rescue robot while maneuvering on uneven terrain. Journal of Mechanical Science and Technology , 32 (5), 2021-2028. https://doi.org/10.1007/s12206-018-0410-7

Ding, X., Liu, Y., Hou, J., & Ma, Q. (2019). Online dynamic tip-over avoidance for a wheeled mobile manipulator with an improved tip-over moment stability criterion. IEEE Access , 7, 67632 - 67645. https://doi.org/10.1109/ACCESS.2019.2915115

García, J. M., Bohórquez, A., & Valero, A. (2020). Suspension effect in tip-over stability and steerability of robots moving on sloping terrains. IEEE Latin America Transactions , 18 (8), 1381-1389. https://doi.org/10.1109/TLA.2020.9111673

García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A. (2017b). Caster-leg aided maneuver for negotiating surface discontinuities with a wheeled skid-steer mobile robot. Robotics and Autonomous Systems , 91, 25-37. https://doi.org/10.1016/j.robot.2016.12.007

García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A. (2017c). Slide-Down Prevention for Wheeled Mobile Robots on Slopes. 3rd International Conference on Mechatronics and Robotics Engineering, (págs. 1-6). Paris. https://doi.org/10.1145/3068796.3068820

García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A. (2015b). Steerability analysis on slopes of a mobile robot with a ground contact arm. Proc. 23rd Mediterranean Conference on Control and Automation, (págs. 267-272). Torremolinos. https://doi.org/10.1109/MED.2015.7158761

García, J. M., Medina, I., Cerezo, A. G., & Linares, A. (2015a). Improving the static stability of a mobile manipulator using its end effector in contact with the ground. IEEE Latin American Transactions , 13 (10), 3228-3234. https://doi.org/10.1109/TLA.2015.7387226

García, J. M., Medina, I., Martínez, J. L., García-Cerezo, A., Linares, A., & Porras, C. (2017a). Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo. Revista Iberoamericana de Automática e Informática Industrial , 14, 174-183. https://doi.org/10.1016/j.riai.2016.09.012

Ghaffari, A., Meghdari, A., Naderi, D., & Eslami, S. (2008). Tipover stability enhancement of wheeled mobile manipulators using an adaptive neuro- fuzzy inference controller system. World academy of science, engineering and technology, (págs. 241-247).

Go, Y., Yin, X., & Bowling, A. (2006). Navigability of multi-legged robots. IEEE/ASME Transactions on Mechatronics , 11 (1), 1-8. https://doi.org/10.1109/TMECH.2005.863361

Hatano, M., & Obara, H. (2003). Stability evaluation for mobile manipulators using criteria based on reaction. SICE Annual Conference, (págs. 2050-2055). Fukui.

He, L. (2012). Tip-over avoidance algorithm for modular mobile manipulator. First International Conference on Innovative Engineering Systems, (págs. 115-120). Alexandria. https://doi.org/10.1109/ICIES.2012.6530855

Kim, J., Chung, W., Youm, Y., & Lee, B. (2002). Real-time ZMP compensation method using null motion for mobile manipulators. IEEE International Conference on Robotics & Automation, (págs. 1967-1972). Washington. https://doi.org/10.1109/ROBOT.2002.1014829

Meghdari, A., Naderi, D., & Alam, M. (2005). Neural-network-based observer for real-time tipover estimation. Mechatronics , 15, 989-1004. https://doi.org/10.1016/j.mechatronics.2005.03.005

Montaño, J., Palmer, A., Sesé, A., & Cajal, B. (2013). Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema , 25 (4), 500-506. DOI: 10.7334/psicothema2013.23.

Morales, J., Martínez, J. L., Mandow, A., Serón, J., & García-Cerezo, A. (2013). Static tip-over stability analysis for a robotic vehicle with a single-axle trailer on slopes based on altered supporting polygons. IEEE/ASME Transactions on Mechatronics , 18 (2), 697-705. https://doi.org/10.1109/TMECH.2011.2181955

Pedrero, J., Pleguezuelos, M., & Muñoz, M. (2009). Simplified calculation method for the efficiency of involute spur gears. ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, (págs. 131-138). San Diego. https://doi.org/10.1115/DETC2009-87179

Verstraten, T., Furnémont, R., Mathijssen, G., Vanderborght, B., & Lefeber, D. (2016). Energy consumption of geared DC motors in dynamic applications: comparing modeling approaches. IEEE Robotics and Automation Letters , 1 (1), 524 - 530. https://doi.org/10.1109/LRA.2016.2517820

Descargas

Publicado

05-09-2022

Cómo citar

García, J. M., Moncada, J. N. y Rodríguez Cotrina, J. J. (2022) «Mejoramiento de la navegabilidad de un robot móvil considerando el consumo energético de su brazo», Revista Iberoamericana de Automática e Informática industrial, 20(2), pp. 115–123. doi: 10.4995/riai.2022.17806.

Número

Sección

Artículos