Modelización, Análisis y Control de Sistemas de Cojinetes Magnéticos Activos
Palabras clave:
Cojinetes magnéticos, Modelado, Robustez, Control Activo, Máquina HerramientaResumen
En este estudio se presentan el modelado, diseño de control, análisis de robustez y procedimiento de reducción activa de vibraciones de un sistema consistente en un eje sustentado mediante levitación magnética activa. Primero se describen la obtención del modelo y las características fundamentales del sistema. Empleando dicho modelo y aprovechando propiedades de simetría, se diseña un control de sustentación. Este se ajusta experimentalmente mediante un estudio de robustez, según el estándar ISO 14839-3. Por último, se realiza una reducción de las vibraciones que se producen en rotación, utilizando control adaptativo. El controlador final diseñado ha sido implementado experimentalmente con éxito.Descargas
Citas
Ahn, H.J. and D.C. Han (2003). System modeling of an AMB spindle: Part I modeling and validation for robust control. KSME International Journal 17, 1844– 1854.
Arredondo, I. and J. Jugo (2007). Diseño e implementación de un FLL para su uso en control activo de máquinas de precisión con elementos rotantes. In: XXVIII Jornadas de Automática. Huelva (Spain).
Arredondo, I., J. Jugo and V. Etxebarria (2006). Modelling of a flexible rotor MagLev system. In: Proceedings of 2006 American Control Conference. Minneapolis, Minnesota (USA).
Astrom, K.L. and B. Wittenmark (1989). Adaptive Control. Addison-Wesley. New York (USA).
Chen, M. and CR Knospe (2007). Control approaches to the suppression of machining chatter using active magnetic bearings. IEEE Trans on Control Systems Technology 15, 220–232.
Childs, D. (1993). Turbomachinery Rotordynamics: Phenomena, Modeling & Analysis. Jon Wiley & Sons, Inc. New York (USA).
Goodwin, G.C. and K.S. Sin (1984). Adaptive Filtering, Prediction and Control. Prentice-Hall, Inc. Englewood Cliffs, New Jersey (USA).
Hu, T., Z. Lin and P. E. Allaire (2004). Reducing power loss in magnetic bearings by optimizing current allocation. IEEE Trans on Magnetics 40, 1625–1635.
ISO, Standard. (2004). Mechanical vibration - Vibration of rotating machinery equipped with active magnetic bearings - part 3: Evaluation of stability margin. ISO 14839-3:2006(E).
Jugo, J., I. Arredondo and V. Etxebarria (2005). Analysis and control design of MIMO systems based on symmetry properties. In: Proceedings of 44th IEEE Conference on Decision and Control and 2005 European Control Conference. Seville (Spain).
Jugo, J., I. Lizarraga and I. Arredondo (2006). Nonlinear analysis of an AMB system using harmonic domain LTV models. In: Proceedings of IEEE International Conference on Control Applications. Munich (Germany).
Kanemitsu, Y., X-B. Yong, S. Kijimoto and K. Matsuda (2006). Comparison of stability criteria for rotor levitated by active magnetic bearing. In: Proceedings of the 10th International Symposium on Magnetic Bearings. Martigny (Switzerland).
Kasarda, MEF. (2000). An overview of active magnetic bearing technology and applications. The Shock and Vibration Digest 32, 91–99.
Knospe, CR. (2007). Active magnetic bearings for machining applications. Control Engineering Practice 15, 307–313.
Lanzon, A. and P. Tsiotras (2002). Robust control of energy momentum wheels supported on active magnetic bearings using Hinf loop-shaping and musynthesis. In: Proceedings of 15th Triennial World Congress. Barcelona (Spain).
LaunchPoint (2002). MBC500 Magnetic Bearing System Operating Instructions. Goleta, CA (USA).
Li, G., H. Malsen and P. E. Allaire (2006). A note on ISO AMB stability margin. In: Proceedings of the 10th International Symposium on Magnetic Bearings. Martigny (Switzerland).
Maslen, E.H. and D.C. Meeker (1995). Fault tolerance of magnetic bearings by generalized bias current linearization. IEEE Trans on Magnetics 31, 2304–2314.
Nonami, K. and Z. Liu (1999). Adaptive unbalance vibration control of magnetic bearing system using frequency estimation for multiple periodic disturbances with noise. In: Proceedings of IEEE Conf. Control Applications. Hawaii (USA).
Quinn, D.D., G. Mani, M.E.F. Kasarda, T. Bash, D.J. Inman and R.G. Kirk (2005). Damage detection of a rotating cracked shaft using an active magnetic bearing as a force actuator - analysis and experimental verification. IEEE Trans on Mechatronics 10, 640– 647.
Schweitzer, G., H. Bleuler and A. Traxler (1994). Active Magnetic Bearings: Basics, Properties and Applications of Active Magnetic Bearings. vdf Hochschulverlag AG an der ETH Zürich. Zürich (Switzerland).
Shi, J., R. Zmood and L. Qin (2004). Synchronous disturbance attenuation in magnetic bearing systems using adaptive compensating signals. Control Engineering Practice 12, 283–290.
Stephenson, D.A. and J.S. Agapionu (1996). Metal Cutting Theory and Practice. Marcel Dekker. New York (USA).
Suyuan, Y., Y. Guojun, S. Lei and X. Yang (2006). Application and research of the active magnetic bearing in the nuclear power plant of high temperature reactor. In: Proceedings of the 10th International Symposium on Magnetic Bearings. Martigny (Switzerland).
Tamisier, V. and F. Carrère (2004). Synchronous unbalance cancellation across critical speed using a closedloop method. In: Proceedings of the 10th International Symposium on Magnetic Bearings. Mito (Japan).
Untaroiu, A., H.G. Wood, P.E. Allaire, A.L. Throckmorton, S. Day, S.M. Patel, P. Ellman, C. Tribble and D.B. Olsen. (2005). Computational design and experimental testing of a novel axial flow LVAD. ASAIO Journal 51, 702–710.
Wagner, R.C., D.R. Boyle and K. Decker (2002). Evaluation and improvement of eddy current position sensors in magnetically suspended flywheel systems. In: Proceedings of 37th Intersociety Energy Conversion Engineering Conference. Washington D.C (USA).
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)