Modelo de Identificación de Fuentes Sonoras. Aplicación al Ruido del Motor de un Automóvil
DOI:
https://doi.org/10.1016/S1697-7912(10)70040-6Palabras clave:
Síntesis de sonido, Identificación, Loudness, Calidad del Sonido, ASQResumen
La Directiva 49/2002/CE de la UE obliga a los fabricantes de vehículos a certificar las emisiones de ruido al exterior, estableciendo importantes restricciones al respecto. Por lo tanto, resulta imperativo establecer modelos que identifiquen las fuentes de ruido en un vehículo, así como la exactitud de los mismos. En este artículo se presenta un modelo de identificación de fuentes sonoras para el estudio y caracterización del ruido del motor en vehículos. El ruido es experimentalmente caracterizado mediante la técnica de substitución de monopolos adaptado al método general de síntesis de sonido. La técnica de identificación resultante se ilustra mediante varios casos en estudio variando el número de monopolos y la posición del receptor, determinando la precisión del sistema en cada caso.Los resultados indican que el error cometido en el caso más desfavorable es inferior a 15 dB.Descargas
Citas
Bai, M.R. (1992). Application of bem (boundary element method)-based acoustic holography to radiation analisys of sound sources with arbitrarily shaped geometries. Journal of the Acoustical Society of America, 92 (1), 533-549.
Berckmans, D., Janssens, K., Van der Auweraer, H., Sas, P., and Desmet, W. (2008). Model-based synthesis of aircraft noise to quantify human perception of sound quality and annoyance. Journal of Sound and Vibration, 311 (3-5), 1175-1195.
Berckmans, D., Kindt, P., Sas, P., and Desmet, W. (2010). Evaluation of substitution monopole models for tire noise sound synthesis. Mechanical Systems and Signal Processing, 24, 240-255.
Biagiola, S. I., Figueroa, J.L. (2009). Identificación robusta de modelos Wiener y Hammerstein. Revista Iberoamericana de Automática e Informática Industrial, 6 (2), pp 98-107.
Billingsley, J., Kinns, R. (1976). The acoustic telescope. Journal of Sound and Vibration 48 (4).
Crocker, M. J. (1983). Experimental methods for identifying sound sources on a machine, Archiver of Acoustic 8, pp 293-316.
DeLillo, T., Isakov, V., Valdivia, N., and Wang, L.J. (2003). The detection of surface vibrations from interior acoustical pressure, Inverse Problems 19(3), 507-524.
Dumbacher, S.M., and Brown, D.L. (1996). Source imaging of irregularly sharped surfaces using inverse FRF method, Proceeding of ISMA21, Leuven.
Fedorov, V.V. (1972). Theory of optimal experiments. New York, London: Academic Press.
García-Nieto, S, Salcedo, J.V., Blasco, X., Martinez, M. (2009). Sistema de Control Borroso para el Proceso de Renovación de la carga en motores turbodiesel. Revista Iberoamericana de Automática e Informática Industrial 6 (2), pp 36-48.
Gelfand, S. A., (1998). Hearing: An Introduction to Psychological and Physiological Acoustic. Marcel Dekker.
Goodwin, G. C. & Payne, R. L. (1977). Dynamic system identification: Experiment design and data analysis. New York: Academic Press.
Haro, E (2008). Estimación de los parámetros físicos de un automóvil. Revista Iberoamericana de Automática e Informática Indstrial 5 (4), pp 28-35.
Hildebrand, R., & Gervers, M. (2003). Identification for control: Optimal input design with respect to a worst case ݝ-gap cost function. SIAM Journal on Control and Optimization, 41(5), 1586-1608.
Holland, K.R., and Nelson, P.A. (2003). Sound source characterisation: the focussed beamformer vs the inverse method, Proceeding of ICSV 10, Sweden.
Isakov, V., and Wu, S.F. (2002). On theory and application of the helmholtz equation least squares method in inverse acoustic. Inverse Problems, 18(4), 1147-1159.
Jacobsen, F., and Liu, Y. (2005). Nearfield acoustic holography with particle velocity transducers. Journal of the Acoustical Society of America, 118 (5), 3139-3144.
Jansson, H., & Hjalmarsson, H. (2005). Input design via LMIs admitting frecuancy-wise model specifications in confidence regions. IEEE Transactions on Automatic Control, 50(10), 1534-1549.
Kim, Y., and Nelson, P.A. (2004). Optimal regularisation for acoustic source reconstruction by inverse methods, Journal of Sound and Vibration, 275.
Kim, G.T., and Lee, B.H. (1990). 3-D sound source reconstruction and field reprediction using the helmholtz integral-equation. Journal of Sound and Vibration, 136 (2), 245-261.
Louis, A.K. (1999). A unified approach to regularization methods for linear ill-posed problems. Inverse Problems, 15(2), 489-498.
Magalhães, M.B.S., and Tenenbaum, R.A. (2004). Sound sources reconstruction techniques: A review of their evolution and new trends. Acta Acustica United with Acustica, 90 (2), 199-220.
Maynard, J.D., Williams, E.G., and Lee, Y. (1985). Nearfield acoustic holography. 1.theory of generalized holography and the development of NAH. Journal of the Acoustical Society of America, 78 (4), 1395-1413.
Nelson, P.A., and Yoon, P.C. (2000). Estimation of acoustic soure strength by inverse methods: part 1, conditioning of the problem, Journal of Sound and Vibration 233(4), 643- 668.
Ochmann, M. (2004). The complex equivalent source method for sound propagation over an impedance plane. Journal of the Acoustical Society of america, 116(6), 3304-3311.
Ochmann, M. (1999). The full-field equations for acoustic radiation and scattering. Journal of the Acoustical Society of America, 105(5), 2574-2584.
Oliveira, L.P.R., Janssens, K., Gajdatsy, P., Van der Auweraer, H., Paolo, S.V., Sas, P., and Desmet, W. (2008). Active sound quality control of engine induced cavity noise. Mechanical Systems and Signal Processing, 23, pp. 476- 488.
Rayess, N., and Wu, S.F. (2000). Experimental validations of the hels method for reconstructing acoustic radiation from a complex vibrating structure. Journal of the Acoustical Society of America, 107(6), 2955-2964.
Schumacher, A.P., and Hansen, P.C. (2001). Sound source reconstruction using inverse bem, Proceeding of InterNoise 2001, Holland.
Timoney, J., et al., (2004). Implementing Loudness models in Matlab, Procceding of the 7TH International Conference on Digital Audio Effects, Italy.
Verheij, J.W., Hopmans, L.J.M., and Liebregts, R.M.J. (1996). Use of a new source descriptor for designing quieter heavy road vehicles, Proceedings of International Conference on Noise and Vibration Engineering, Leuven.
Verheij, J.W., Hoebrichts, A.N.J., and Thompson, D.J. (1994). Acoustical source strength characterisation for heavy road vehicle engines in connection with pass-by noise. Third International Congress on air-and structure-borne sound and vibration, Montreal.
Verheij, J.W. (1992). Reciprocity method for quantification of airborne sound transfer form machinery. Second International Congress on air- and structure-borne sound and vibration, USA.
Veronesi, W.A., and Maynard, J.D. (1989). Digital holography reconstruction of sources with arbitrarily shaped surfaces. Journal of Acoustical Society of America, 85 (2), 588-598.
Visser, R. (2004). A boundary element approach to acoustic radiation and source identification. Phd thesis.
Wang, Z.X., and Wu, S.F. (1997). Helmholtz equation leastsquares method for reconstructing the acoustic pressure field. Journal of the Acoustical Society of america, 102(4), 2020-2032.
Whittle, P. (1973). Some general points in the theory of optimal experimental design. Journal of the Royal Statistical Society, 35 (1), 123-130.
Williams, E.G. (1999). Fourier Acoustics: Sound radiation and Nearfield Acoustical Holography. Academic Press.
Williams, E.G., Maynard, J.D., Skudrzyk, E. (1980). Sound source reconstructions using a microphone array, Journal of Acoustical Society of America 68 (4), 340-344.
Wu, S.F. And Yu, J.Y. (1998). Reconstructing interior acoustic pressure fields via helmholtz equation least-squares method. Journal of the Acoustical Society of America, 104(4), 2054-2060.
Zwicker, E., Fastl, H., Dallmayr, C. (1984). Basic program for calculating the loudness of sounds from their 1/3 oct band spectra according to ISO 532 B, Acustica, 55, pp. 63-67
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)