Optimización de Parámetros Utilizando los Métodos de Monte Carlo y Algoritmos Evolutivos. Aplicación a un Controlador de Seguimiento de Trayectoria en Sistemas no Lineales
DOI:
https://doi.org/10.4995/riai.2018.8796Palabras clave:
Control en lazo cerrado, sistemas no lineales, control de sistemas multivariables, método de Monte Carlo, Algoritmos GenéticosResumen
En este trabajo se propone una estrategia de control en lazo cerrado para el seguimiento de perfiles óptimos previamente definidos para un bioproceso fed-batch. La mayor ventaja de este enfoque es que las acciones de control se calculan resolviendo un sistema de ecuaciones lineales, sin tener que linealizar el modelo matemático, lo que permite trabajar en cualquier rango. Además, se plantean tres técnicas para la sintonización de los parámetros del controlador diseñado. Primero se propone un método de Monte Carlo, el cual es un método probabilístico. En segundo lugar, se presenta una metodología basada en Algoritmos Genéticos, una técnica evolutiva de optimización. La tercera alternativa es el desarrollo de un Algoritmo Híbrido, diseñado a partir de la combinación de los dos métodos anteriores. En todos los casos, el objetivo es encontrar los parámetros del controlador que minimicen el error total de seguimiento de trayectorias. El desempeño del controlador se evalúa a través de simulaciones en condiciones normales de operación y frente a incertidumbre paramétrica, empleando los parámetros del controlador obtenidos.
Descargas
Citas
Asadi, E., Da Silva, M. G., Antunes, C. H., Dias, L.,Glicksman, L. 2014. Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy and Buildings, 81, 444-456. https://doi.org/10.1016/j.enbuild.2014.06.009
Ashoori, A., Moshiri, B., Khaki-Sedigh, A.,Bakhtiari, M. R. 2009. Optimal control of a nonlinear fed-batch fermentation process using model predictive approach. Journal of Process Control, 19, 7, 1162-1173. https://doi.org/10.1016/j.jprocont.2009.03.006
Bayen, T.,Mairet, F. 2013. Minimal time control of fed-batch bioreactor with product inhibition. Bioprocess and Biosystems Engineering, 36, 10, 1485-1496. https://doi.org/10.1007/s00449-013-0911-9
Bogaerts, P.,Coutinho, D. 2014. Robust nonlinear state estimation of bioreactors based on H∞ hybrid observers. Computers & Chemical Engineering, 60, 315-328. https://doi.org/10.1016/j.compchemeng.2013.09.013
Bogaerts, P.,Wouwer, A. V. 2003. Software sensors for bioprocesses. ISA transactions, 42, 4, 547-558. https://doi.org/10.1016/S0019-0578(07)60005-6
Cosenza, B.,Galluzzo, M. 2012. Nonlinear fuzzy control of a fed-batch reactor for penicillin production. Computers & Chemical Engineering, 36, 273-281. https://doi.org/10.1016/j.compchemeng.2011.07.016
Craven, S., Whelan, J.,Glennon, B. 2014. Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller. Journal of Process Control, 24, 4, 344-357. http://dx.doi.org/10.1016/j.jprocont.2014.02.007
Chang, D. M. 2003. The Snowball Effect in Fedâ€Batch Bioreactions. Biotechnology progress, 19, 3, 1064-1070. https://doi.org/10.1021/bp025792a
Chung, Y.C., Chien, I.L.,Chang, D.M. 2006. Multiple-model control strategy for a fed-batch high cell-density culture processing. Journal of Process Control, 16, 1, 9-26. https://doi.org/10.1016/j.jprocont.2005.05.003
Daoutidis, P., Zachar, M.,Jogwar, S. S. 2016. Sustainability and process control: A survey and perspective. Journal of Process Control, 44, 184-206. https://doi.org/10.1016/j.jprocont.2016.06.002
Dewasme, L., Fernandes, S., Amribt, Z., Santos, L., Bogaerts, P.,Wouwer, A. V. 2015. State estimation and predictive control of fed-batch cultures of hybridoma cells. Journal of Process Control, 30, 50-57. https://doi.org/10.1016/j.jprocont.2014.12.006
Fernández, M. C., Rómoli, S., Pantano, M. N., Ortiz, O. A., Pati-o, D.,Scaglia, G. J. 2018. A New Approach for Nonlinear Multivariable Fed-Batch Bioprocess Trajectory Tracking Control. Automatic Control and Computer Sciences, 52, 1, 13-24. https://doi.org/10.3103/S0146411618010030
Hassan, L. H., Moghavvemi, M., Almurib, H. A.,Steinmayer, O. 2013. Application of genetic algorithm in optimization of unified power flow controller parameters and its location in the power system network. International Journal of Electrical Power & Energy Systems, 46, 89-97. https://doi.org/10.1016/j.ijepes.2012.10.011
Holland, J. H. 1975. Adaptation in natural and artificial systems. An introductory analysis with application to biology, control, and artificial intelligence. Ann Arbor, MI: University of Michigan Press,
Hulhoven, X., Wouwer, A. V.,Bogaerts, P. 2006. Hybrid extended Luenberger-asymptotic observer for bioprocess state estimation. Chemical Engineering Science, 61, 21, 7151-7160. http://dx.doi.org/10.1016/j.ces.2006.06.018.
Hunag, W.H., Shieh, G. S.,Wang, F.S. 2012. Optimization of fed-batch fermentation using mixture of sugars to produce ethanol. Journal of the Taiwan Institute of Chemical Engineers, 43, 1, 1-8. https://doi.org/10.1016/j.jtice.2011.06.007
Imtiaz, U., Assadzadeh, A., Jamuar, S. S.,Sahu, J. N. 2013. Bioreactor temperature profile controller using inverse neural network (INN) for production of ethanol. Journal of Process Control, 23, 5, 731-742. http://dx.doi.org/10.1016/j.jprocont.2013.03.005
Imtiaz, U., Jamuar, S. S., Sahu, J. N.,Ganesan, P. B. 2014. Bioreactor profile control by a nonlinear auto regressive moving average neuro and two degree of freedom PID controllers. Journal of Process Control, 24, 11, 1761-1777. https://doi.org/10.1016/j.jprocont.2014.09.012
Ismail, M., Moghavvemi, M.,Mahlia, T. 2014. Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems. Energy Conversion and Management, 85, 120-130. https://doi.org/10.1016/j.enconman.2014.05.064
Jin, H., Chen, X., Yang, J., Wu, L.,Wang, L. 2014. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process. ISA transactions, 53, 6, 1822-1837. https://doi.org/10.1016/j.isatra.2014.08.015
Johnson, A. 1987. The control of fed-batch fermentation processes—a survey. Automatica, 23, 6, 691-705. https://doi.org/10.1016/0005-1098(87)90026-4
Lee, J., Lee, S. Y., Park, S.,Middelberg, A. P. J. 1999. Control of fed-batch fermentations. Biotechnology Advances, 17, 1, 29-48. https://doi.org/10.1016/S0734-9750(98)00015-9
Mohanty, B., Panda, S.,Hota, P. 2014. Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system. International journal of electrical power & energy systems, 54, 77-85. https://doi.org/10.1016/j.ijepes.2013.06.029
Mohd, N.,Aziz, N. 2015. Control of bioethanol fermentation process: NARX-based MPC (NARX-MPC) versus linear-based MPC (LMPC). CHEMICAL ENGINEERING, 45, Ochoa, S., Wozny, G.,Repke, J.-U. 2010. Plantwide optimizing control of a continuous bioethanol production process. Journal of Process Control, 20, 9, 983-998.
Pachauri, N., Rani, A.,Singh, V. 2017. Bioreactor temperature control using modified fractional order IMC-PID for ethanol production. Chemical Engineering Research and Design, 122, 97-112. https://doi.org/10.1016/j.cherd.2017.03.031
Pantano, M. N., Serrano, M. E., Fernández, M. C., Rossomando, F. G., Ortiz, O. A.,Scaglia, G. J. 2017. Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation. Industrial & Engineering Chemistry Research, 56, 20, 6043-6056. https://doi.org/10.1021/acs.iecr.7b00831
Rajarathinam, K., Gomm, J. B., Yu, D.-L.,Abdelhadi, A. S. 2016. PID controller tuning for a multivariable glass furnace process by genetic algorithm. International Journal of Automation and Computing, 13, 1, 64-72. https://doi.org/10.1007/s11633-015-0910-1
Rani, K. Y.,Rao, V. R. 1999. Control of fermenters–a review. Bioprocess Engineering, 21, 1, 77-88. https://doi.org/10.1007/PL00009066
Renard, F.,Wouwer, A. V. 2008. Robust adaptive control of yeast fed-batch cultures. Computers & Chemical Engineering, 32, 6, 1238-1248. https://doi.org/10.1016/j.compchemeng.2007.05.008
Renard, F., Wouwer, A. V., Valentinotti, S.,Dumur, D. 2006. A practical robust control scheme for yeast fed-batch cultures–an experimental validation. Journal of Process Control, 16, 8, 855-864. https://doi.org/10.1016/j.jprocont.2006.02.003
Rocha, M., Mendes, R., Rocha, O., Rocha, I.,Ferreira, E. C. 2014. Optimization of fed-batch fermentation processes with bio-inspired algorithms. Expert Systems with Applications, 41, 5, 2186-2195. https://doi.org/10.1016/j.eswa.2013.09.017
Rossomando, F. G.,Soria, C. M. 2015a. Design and implementation of adaptive neural PID for non linear dynamics in mobile robots. IEEE Latin America Transactions, 13, 4, 913-918. https://doi.org/10.1109/TLA.2015.7106337
Rossomando, F. G.,Soria, C. M. 2015b. Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID. Neural Computing and Applications, 26, 5, 1179-1191. https://doi.org/10.1007/s00521-014-1805-8
Sadatsakkak, S. A., Ahmadi, M. H., Bayat, R., Pourkiaei, S. M.,Feidt, M. 2015. Optimization density power and thermal efficiency of an endoreversible Braysson cycle by using non-dominated sorting genetic algorithm. Energy Conversion and Management, 93, 31-39. https://doi.org/10.1016/j.enconman.2014.12.088
Saint-Donat, J., Bhat, N.,Mcavoy, T. J. 1991. Neural net based model predictive control. International Journal of Control, 54, 6, 1453-1468. https://doi.org/10.1080/00207179108934221
Santos, L. O., Dewasme, L., Coutinho, D.,Wouwer, A. V. 2012. Nonlinear model predictive control of fed-batch cultures of micro-organisms exhibiting overflow metabolism: assessment and robustness. Computers & Chemical Engineering, 39, 143-15. https://doi.org/10.1016/j.compchemeng.2011.12.010
Sarkar, D.,Modak, J. M. 2003. Optimisation of fed-batch bioreactors using genetic algorithms. Chemical Engineering Science, 58, 11, 2283-2296. https://doi.org/10.1016/S0009-2509(03)00095-2
Sarkar, D.,Modak, J. M. 2004. Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables. Computers & Chemical Engineering, 28, 5, 789-798,
https://doi.org/10.1016/j.compchemeng.2004.02.018
Soni, A. S.,Parker, R. S. 2004. Closed-loop control of fed-batch bioreactors: A shrinking-horizon approach. Industrial & engineering chemistry research, 43, 13, 3381-3393. https://doi.org/10.1021/ie030535b
Strang, G. 2006. Linear Algebra and Its applications, USA.
Tempo, R.,Ishii, H. 2007. Monte Carlo and Las Vegas Randomized Algorithms for Systems and Control*: An Introduction. European journal of control, 13, 2, 189-203. https://doi.org/10.3166/ejc.13.189-203
Tholudur, A.,Ramirez, W. F. 1996. Optimization of Fedâ€Batch Bioreactors Using Neural Network Parameter Function Models. Biotechnology Progress, 12, 3, 302-309. https://doi.org/10.1021/bp960012h
Troncoso, C.,Suárez, A. 2017. Control del Nivel de Pulpa en un Circuito de Flotación Utilizando una Estrategia de Control Predictivo. Revista Iberoamericana de Automática e Informática Industrial RIAI, 14, 3, 234-245. https://doi.org/10.1016/j.riai.2017.04.003
Vilanova, R., Santín, I.,Pedret, C. 2017. Control y Operación de Estaciones Depuradoras de Aguas Residuales: Modelado y Simulación. Revista Iberoamericana de Automática e Informática Industrial RIAI, 14, 3, 217-233. https://doi.org/10.1016/j.riai.2017.05.004
Vilums, S.,Grigs, O. 2012. Application of functional state modelling approach for yeast Saccharomyces cerevisiae batch fermentation state estimation. 5th International Scientific Conference on Applied Information and Communication Technologies. Proceedings. 300À305.
Vishal, V., Kumar, V., Rana, K., Mishra, P.,Kumar, J. 2014. Online PI controller tuning for a nonlinear plant using genetic algorithm. Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH), 2014 Innovative Applications of, 2014. IEEE, 143-148. https://doi.org/10.1109/CIPECH.2014.7019051
Wechselberger, P., Seifert, A.,Herwig, C. 2010. PAT method to gather bioprocess parameters in real-time using simple input variables and first principle relationships. Chemical Engineering Science, 65, 21, 5734-5746. https://doi.org/10.1016/j.ces.2010.05.002
Yu, W., Li, B., Jia, H., Zhang, M.,Wang, D. 2015. Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy and Buildings, 88, 135-143. https://doi.org/10.1016/j.enbuild.2014.11.063
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)