Mejora de la Vida Útil en los Módulos de Electrónica de Potencia de un BLDCM Mediante la Optimización de un Control Difuso
DOI:
https://doi.org/10.4995/riai.2018.9078Palabras clave:
Módulo de Electrónica de Potencia, BLDCM, Control Difuso, Tiempo de Vida Útil, Optimización por Enjambre de PartículasResumen
El tiempo de vida útil en los elementos de electrónica de potencia en accionamientos eléctricos para motores de corriente directa sin escobillas BLDCM (por sus siglas en inglés Brushless Direct Current Motor), pueden verse afectados debido a las pérdidas por conmutación y conducción que aparecen durante su operación. Estas pérdidas normalmente no se considerarán en el diseño del controlador, por lo que su vida útil disminuye drásticamente o genera fallas prematuramente. El presente trabajo propone la optimización de un controlador difuso mediante el algoritmo PSO (por sus siglas en inglés Particle Swarm Optimization), este diseño considera la temperatura en los semiconductores y la velocidad mecánica del BLDCM, lo que permite incrementar la vida útil de los semiconductores utilizados en los módulos de electrónica de potencia, al mismo tiempo que alcanza la velocidad de referencia asignada. Finalmente, los resultados del controlador difuso optimizado (Difuso-PSO) propuesto se comparan con un controlador proporcional, derivativo e integral (PID) convencional, y un controlador difuso convencional. Estos resultados muestran ser superiores en comparación a los controladores convencionales, ya que incrementan el tiempo de vida de los semiconductores y alcanzan las velocidades de referencia establecidas. Adicionalmente, se emplea la co-simulación como una herramienta que permite diseñar, implementar y validar los resultados de manera confiable. En esta co-simulación la electrónica de potencia, el BLDCM y el controlador propuesto fueron diseñados en MultisimTM y LabVIEWTM de National Instrument (NI).
Descargas
Citas
ABB Switzerland Ltd, Semiconductors (2014). Load-cycling capability of Hipak IGBT modules, Application Note 5SYA 2043-04.
Akkar, H. A.R, A-Amir, A. N and Saleh. M.S. (2015). Tuning of Fuzzy Logic Controller for a DC Motor based on Particle Swarm Optimization. International Journal os Scientific & engineering Research, Volume 6, Issue 10 October 2015.
Ahmed S, Topalov A., Dimitrov N and Bonev E. (2016). Industrial Implementation of a Fuzzy Logic Controller for Brushless DC Motor Drives using the PicoMotion Control Framework. IEEE 8th International Conference on Intelligent Systems. https://doi.org/10.1109/IS.2016.7737493
Amin A. M. and Hegazy O. T. (2009). Swarm Intelligence Applications in Electric Machines, Particle Swarm Optimization, InTech, InTech Europe, InTech China
Andresen M, Liserre M, Buticchi G and Albrechts C. (2014). Review of Active Thermal and Lifetime Control Techniques for Power Electronic Modules 16th European Conference on Power Electronics and Applications. https://doi.org/10.1109/EPE.2014.6910822
Andresen M, Ma K, Buticchi G. Falck J, Blaabjerg F and Liserre M. (2018). Junction Temperature Control for More Reliable Power Electronics. IEEE Transactions on Power Electronics. https://doi.org/10.1109/TPEL.2017.2665697
Batunlu C, Alrweq M, Albarbar A (2016) Effects of Power Tracking Algorithms on Lifetime of Power Electronic Devices Used in Solar Systems. Energies 9:884. https://doi.org/10.3390/en9110884
Bayerer R, Herrmann T, Licht T, et al (2008) Model for Power Cycling lifetime of IGBT Modules - various factors influencing lifetime. In: 5th International Conference on Integrated Power Electronics Systems. Cellier FE, Kofman E (2006) Continuous system simulation. Springer, New York
Chau KT (2015) Electric vehicle machines and drives: design, analysis and application. IEEE, Wiley, Singapore. https://doi.org/10.1002/9781118752555
Corne DW, Reynolds A, Bonabeau E (2012) Swarm intelligence. In: Handbook of Natural Computing. Springer, pp 1599–1622. https://doi.org/10.1007/978-3-540-92910-9_48
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS '95. pp 39–43. https://doi.org/10.1109/MHS.1995.494215
Fitzgerald J, Larsen PG, Verhoef M (eds) (2014) Collaborative Design for Embedded Systems. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54118-6
Fuji Electric (2015) FUJI IGBT MODULES APPLICATION MANUAL. Fuji Electric Device Technology Co., Ltd.
Gomes C, Thule C, Broman D, et al (2017) Co-simulation: State of the art.
GopiReddy LR, Tolbert LM, Ozpineci B (2015) Power Cycle Testing of Power Switches: A Literature Survey. IEEE Trans Power Electron 30:2465–2473. https://doi.org/10.1109/TPEL.2014.2359015
Graovac, D. and Pürschel, M, 2009. Automotive Power: Application Note, V 1.1. Neubiberg, Germany. Published by Infineon TechnologiesAG.
Haaf, P., & Harper, J. (2007). Understanding diode reverse recovery and its effect on switching losses.
Hanselman DC (2006) Brushless permanent magnet motor design, 2. ed. Magna Physics Publishing, Lebanon, Ohio
Held M, Jacob P, Nicoletti G, et al (1997) Fast power cycling test of IGBT modules in traction application. In: Proceedings of Second International Conference on Power Electronics and Drive Systems. pp 425–430 vol.1. https://doi.org/10.1109/PEDS.1997.618742
Infineon (2012) AN 2015-10, Transient Thermal Measurements and thermal equivalent circuit models.
Luo H, Krueger M, Koenings T, et al (2017) Real-Time Optimization of Automatic Control Systems With Application to BLDC Motor Test Rig. IEEE Trans Ind Electron 64:4306–4314. doi: 10.1109/TIE.2016.2577623
https://doi.org/10.1109/TIE.2016.2577623
Ma K, Vernica I, Blaabjerg F (2016) Advanced design tools for the lifetime of power electronics-study case on motor drive application. In: Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016 IEEE 8th International. IEEE, pp 3255–3261
Murdock D. A, Ramos T. J. E, Connors J. J. and Lorenz R. D. (2006). Active Thermal Control of Power Electronic Modules. IEEE Transactions on Industry Applications. https://doi.org/10.1109/TIA.2005.863905
National Instruments (2013) Introduction to Digital and Analog Co-simulation Between NI LabVIEW and NI Multisim - National Instruments. http://www.ni.com/white-paper/13663/en/. Accessed 14 Oct 2017
Nasseer K. Bachache and Jinyu Wen. (2013). Multi Objective Swarm Optimization Design Fuzzy Controller to Adjust Speed of AC Motor Drive. Advances in Swarm Intelligence. ICSI 2013. Lecture Notes in Computer Science, vol 7928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38703-6_61
Park, Jong Mun (2004) Novel power devices for smart power applications, na. Ponce P, Molina A, Mata O, Ibarra L and MacCleery B. Power System Fundamentals. Taylor & Francis Group, LLC. Boca Raton FL. USA.
Parker MA, Soraghan C, Giles A (2016) Comparison of power electronics lifetime between vertical- and horizontal-axis wind turbines. IET Renew Power Gener 10:679–686. https://doi.org/10.1049/iet-rpg.2015.0352
Pillay P, Krishnan R (1991) Application characteristics of permanent magnet synchronous and brushless DC motors for servo drives. IEEE Trans Ind Appl 27:986–996. https://doi.org/10.1109/28.90357
Poli R (2008) Analysis of the Publications on the Applications of Particle Swarm Optimisation. J Artif Evol Appl 2008:1–10. https://doi.org/10.1155/2008/685175
Ponce-Cruz P, Ramírez-Figueroa FD (2010) Intelligent Control Systems with LabVIEWTM. Springer London, London. https://doi.org/10.1007/978-1-84882-684-7
Prabu MJ, Poongodi P, Premkumar K (2016) Fuzzy supervised online coactive neuro-fuzzy inference system-based rotor position control of brushless DC motor. IET Power Electron 9:2229–2239. https://doi.org/10.1049/iet-pel.2015.0919
Premkumar K, Manikandan BV (2015) Speed control of Brushless DC motor using bat algorithm optimized Adaptive Neuro-Fuzzy Inference System. Appl Soft Comput 32:403–419. doi: 10.1016/j.asoc.2015.04.014 Qin. Z, Wang. H, Blaabjerg. F and Loh. P.C. 2015. The Feasibility Study on Thermal Loading Control of Wind Power Converters with a Flexible Switching Frequency. IEEE Energy Conversion Congress and Exposition (ECCE). https://doi.org/10.1109/ECCE.2015.7309728
Renesas (2017) Semiconductor Reliability Handbook.
Song M-P, Gu G-C (2004) Research on particle swarm optimization: a review. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826). pp 2236–2241 vol.4
Soulatiantork P, Alghassi A, Faifer M, Perinpanayagam S (2017) IGBT Thermal Stress Reduction Using Advance Control Strategy. Procedia CIRP 59:274–279. https://doi.org/10.1016/j.procir.2016.09.040
ST Microelectronics, 2017. AN5028: Calculation of turn-off power losses
Vincotech (2017) 10-0B066PA006SB-M992F09 Datasheet.
Wintrich, A., Nicolai, U., Reimann, T., & Tursky, W. (2011). Application manual power semiconductors. ISLE.
Xia C (2012) Permanent magnet brushless DC motor drives and controls. Wiley [u.a.], Hoboken, NJ. https://doi.org/10.1002/9781118188347
Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive Particle Swarm Optimization. IEEE Trans Syst Man Cybern Part B Cybern 39:1362–1381. https://doi.org/10.1109/TSMCB.2009.2015956
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)