Control de un compensador activo selectivo mediante un algoritmo de optimización sujeto a restricciones cuadráticas

Autores/as

  • J.C. Alfonso Gil Universitat Jaume I
  • C. Ariño Universitat Jaume I
  • E. Pérez Universitat Jaume I
  • H. Beltrán Universitat Jaume I

DOI:

https://doi.org/10.1016/j.riai.2014.10.001

Palabras clave:

Sistemas eléctricos de potencia, Distribución de potencia, Problemas de optimización, Control con prealimentación

Resumen

El objetivo fundamental de este artículo es proponer un algoritmo de optimización basado en desigualdades matriciales lineales (LMIs) para la compensación selectiva del desequilibrio, el desfase y la distorsión armónica de las corrientes de carga de un sistema trifásico a cuatro hilos. Mediante el IEEE Std.1459 se determinan los términos de potencia que cuantifican cada uno de los fenómenos no eficientes a compensar (desequilibrio, desfase y distorsión) y, a continuación, se define la programación cuadrática sujeta a restricciones cuadráticas y la forma de resolver la optimización mediante LMIs. El algoritmo utiliza unos coeficientes de ponderación asociados a cada uno de los términos no eficientes para darles más o menos importancia relativa en función del criterio elegido en cada momento. Por otro lado, se realiza el diseño del condensador de corriente continua y los reguladores para el control de la tensión de dicho condensador. Así mismo, se diseñan tres tipos diferentes de reguladores para el control de corriente del SAPC y se analizan las prestaciones de cada uno de ellos. Finalmente se simulan diferentes casos de compensación selectiva, se analizan los resultados obtenidos y se exponen las conclusiones.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Akagi, Hirofumi, Edson Watanabe, and Mauricio Aredes. 2008. “More Power to You (review of Instantaneous Power Theory and Applications to Power Conditioning by Akagi, H. et Al.; 2007).” IEEE Power and Energy Magazine 6 (1): 80–81.

Alfonso-Gil, J. C, C Ariño, H Beltrán, and E Pérez. 2013. “Comparative Study of Current Controllers for Shunt Active Power Compensators Used in Smart Grid Applications.” International Conference on Renewable Energies and Power Quality (ICREPQ’13). Bilbao (Spain): 978-84-695- 6965-8.

Alfonso-Gil, J. C., C. Ariño, C. Bernad Viciano, H. Beltran, and E. Pérez. 2014 “Control de La Tensión Del Bus de Continua de Un Filtro Activo de Tipo Paralelo.” XXXV Jornadas de Automática. Valencia: 122–129.

Alfonso-Gil, Jose Carlos, Jose Joaquin Vague-Cardona, Salvador Orts-Grau, Francisco J. Gimeno-Sales, and Salvador Segui-Chilet. 2013. “Enhanced Grid Fundamental Positive-Sequence Digital Synchronization Structure.” IEEE Transactions on Power Delivery 28 (1) (January): 226–234.

Boyd, Stephen, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. 1994. Linear Matrix Inequalities in System and Control Theory.

Briz, Fernando, Pablo Garcia, Michael W. Degner, David Diaz-Reigosa, and Juan Manuel Guerrero. 2013. “Dynamic Behavior of Current Controllers for Selective Harmonic Compensation in Three-Phase Active Power Filters.” IEEE Transactions on Industry Applications 49 (3) (May): 1411– 1420.

Dixon, J., S. Tepper, and L. Morán. 1996. “Practical Evaluation of Different Modulation Techniques for Current-Controlled Voltage Source Inverters.” IEEE Proceedings - Electric Power Applications 143 (4): 301.

Gupta, Nitin, S. P. Singh, and S. P. Dubey. 2011. “Fuzzy Logic Controlled Shunt Active Power Filter for Reactive Power Compensation and Harmonic Elimination.” In 2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011), 82–87.

“IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions.” 2010.

Khadem, S.K., M. Basu, and M.F. Conlon. 2014. “Harmonic Power Compensation Capacity of Shunt Active Power Filter and Its Relationship with Design Parameters.” Power Electronics, IET 7 (2) (February 1): 418–430.

Kuiava, R., R. A. Ramos, and N. G. Bretas. 2009. “Control Design of a STATCOM with Energy Storage System for Stability and Power Quality Improvements.” In 2009 IEEE International Conference on Industrial Technology, 1–6.

Liu, Fangrui, and Ali I. Maswood. 2006. “A Novel Variable Hysteresis Band Current Control of Three-Phase Three-Level Unity PF Rectifier With Constant Switching Frequency.” IEEE Transactions on Power Electronics 21 (6) (November): 1727–1734.

Lobo, Miguel Sousa, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. 1998. “Applications of Second-Order Cone Programming.” Linear Algebra and Its Applications 284 (1-3) (November): 193–228.

Lofberg, J. 2004. “YALMIP: A Toolbox for Modeling and Optimization in MATLAB.” In 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), 284–289.

Malesani, L., P. Tenti, E. Gaio, and R. Piovan. 1991. “Improved Current Control Technique of VSI PWM Inverters with Constant Modulation Frequency and Extended Voltage Range.” IEEE Transactions on Industry Applications 27 (2): 365–369.

Miranda, Homero, Víctor Cárdenas, and Elvia Palacios. 2008. “Una Alternativa Para Regular Los Buses de CC En Un Filtro Activo Paralelo Con Inversor de 5 Niveles En Cascada.” Revista Iberoamericana de Automática E Informática Industrial RIAI 5 (3): 29–36.

Mishra, M.K., A. Joshi, and A. Ghosh. 2003. “Control Schemes for Equalization of Capacitor Voltages in Neutral Clamped Shunt Compensator.” IEEE Transactions on Power Delivery 18 (2) (April): 538–544.

Orts, S., F.J. Gimeno-Sales, A. Abellan, S. Segui-Chilet, M. Alcaniz, and R. Masot. 2008. “Achieving Maximum Efficiency in Three-Phase Systems With a Shunt Active Power Compensator Based on IEEE Std. 1459.” IEEE Transactions on Power Delivery 23 (2) (April): 812–822.

Orts-Grau, S., J.C. Alfonso-Gil, F.J. Gimeno-Sales, and S. Segui-Chilet. 2010. “New Resolution of the Unbalance Power According to Std. 1459.” IEEE Transactions on Power Delivery 25 (1) (January): 341–350.

Orts-Grau, S., F. J. Gimeno-Sales, A. Abellan-Garcia, S. Segui-Chilet, and J. C. Alfonso-Gil. 2010. “Improved Shunt Active Power Compensator for IEEE Standard 1459 Compliance.” IEEE Transactions on Power Delivery 25 (4) (October): 2692–2701.

Orts-Grau, S., F.J. Gimeno-Sales, S. Segui-Chilet, A. Abellan-Garcia, M. Alcaniz, and R. Masot-Peris. 2008. “Selective Shunt Active Power Compensator Applied in Four-Wire Electrical Systems Based on IEEE Std. 1459.” IEEE Transactions on Power Delivery 23 (4) (October): 2563–2574.

Orts-Grau, S., F.J. Gimeno-Sales, S. Segui-Chilet, A. Abellan-Garcia, M. Alcaniz-Fillol, and R. Masot-Peris. 2009. “Selective Compensation in Four-Wire Electric Systems Based on a New Equivalent Conductance Approach.” IEEE Transactions on Industrial Electronics 56 (8) (August): 2862–2874.

Patidar, R. D., and S. P. Singh. 2010. “Digital Signal Processor Based Shunt Active Filter Controller for Customer-Generated Harmonics and Reactive Power Compensation.” Electric Power Components and Systems 38 (8) (May 28): 937–959.

Ponnaluri, S., and A. Brickwedde. 2001. “Generalized System Design of Active Filters.” In 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), 3:1414–1419. IEEE.

Prusty, Smruti Ranjan, Saswat Kumar Ram, B.D. Subudhi, and K.K. Mahapatra. 2011. “Performance Analysis of Adaptive Band Hysteresis Current Controller for Shunt Active Power Filter.” In 2011 International Conference on Emerging Trends in Electrical and Computer Technology, 425–429.

Rudnick, H., J. Dixon, and L. Moran. 2003. “Delivering Clean and Pure Power.” IEEE Power and Energy Magazine 1 (5) (September): 32–40.

Salmeron, P., and R.S. Herrera. 2006. “Distorted and Unbalanced Systems Compensation Within Instantaneous Reactive Power Framework.” IEEE Transactions on Power Delivery 21 (3) (July): 1655–1662.

Shah, Mihir C., Siddharthsingh K. Chauhan, P. N. Tekwani, and Ram Ratan Tiwari. 2014. “Analysis, Design and Digital Implementation of a Shunt Active Power Filter with Different Schemes of Reference Current Generation.” IET Power Electronics 7 (3) (March 1): 627–639.

Singh, B., and V. Verma. 2008. “Selective Compensation of Power-Quality Problems Through Active Power Filter by Current Decomposition.” IEEE Transactions on Power Delivery 23 (2) (April): 792–799.

Singh, Bhim, Vishal Verma, and Jitendra Solanki. 2007. “Neural NetworkBased Selective Compensation of Current Quality Problems in Distribution System.” IEEE Transactions on Industrial Electronics 54 (1) (February): 53–60.

Singh, G.K., A.K. Singh, and R. Mitra. 2007. “A Simple Fuzzy Logic Based Robust Active Power Filter for Harmonics Minimization under Random Load Variation.” Electric Power Systems Research 77 (8) (June): 1101– 1111.

Sturm, Jos F. 1999. “Using SeDuMi 1.02, A Matlab Toolbox for Optimization over Symmetric Cones.” Optimization Methods and Software 11 (1-4) (January): 625–653.

Zhou, Hua, Yun Wei Li, Navid R. Zargari, Zhongyaun Cheng, Ruoshui Ni, and Ye Zhang. 2014. “Selective Harmonic Compensation (SHC) PWM for Grid-Interfacing High-Power Converters.” IEEE Transactions on Power Electronics 29 (3) (March): 1118–1127

Descargas

Cómo citar

Alfonso Gil, J., Ariño, C., Pérez, E. y Beltrán, H. (2015) «Control de un compensador activo selectivo mediante un algoritmo de optimización sujeto a restricciones cuadráticas», Revista Iberoamericana de Automática e Informática industrial, 12(1), pp. 13–24. doi: 10.1016/j.riai.2014.10.001.

Número

Sección

Artículos