Desarrollo e implementación de una estrategia de gestión de singularidades para un sistema robótico redundante cooperativo destinado a la asistencia en intervenciones quirúrgicas

Autores/as

  • Martín A. Landeira Freire CEIT TECNUN – Universidad de Navarra
  • Emilio Sánchez CEIT TECNUN – Universidad de Navarra
  • Sonia Tejada CUN – Clínica Universidad de Navarra
  • Ricardo Díez CUN – Clínica Universidad de Navarra

DOI:

https://doi.org/10.1016/j.riai.2014.05.007

Palabras clave:

Singularities, Inverse kinematics problem, Redundant manipulator, Co-operative control, Biomedical system

Resumen

En este trabajo se presenta un nuevo prototipo de plataforma robótica cooperativa, destinada a la asistencia en intervenciones quirúrgicas de fijación transpedicular lumbar. El uso de sistemas robóticos de asistencia durante la ejecución de procedimientos quirúrgicos convencionales contribuye a la mejora en los resultados de las intervenciones al permitir elevados niveles de precisión y seguridad. Por ello, resulta crucial garantizar la robustez y destreza de los dispositivos empleados, incluso en las proximidades de configuraciones que pudieran introducir inestabilidades en su funcionamiento. Partiendo de esta idea, se ha implementado una estrategia de gestión de singularidades en la plataforma robótica, basada en el uso de un algoritmo de mínimos cuadrados amortiguados con factor de amortiguamiento adaptativo, unido a un método para la optimización de la configuración articular del manipulador redundante empleado, Mitsubishi PA10–7C.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Barrientos, A., Peñín, L.F., Balaguer, C., Aracil, R., 1997. Fundamentos de Robótica. McGraw-Hill/Interamericana de España S.A. Madrid, España.

Buss, S.R., Kim, J.S., 2005. Selectively Damped least squares for inverse kinematics. Journal of Graphics Tools 10, pp. 37-49. DOI: 10.1080/2151237X.2005.10129202.

Buss, S.R., 2009. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. Estudio no publicado

Chiaverini, S., Oriolo, G., Walker, I.D., 2008. Kinematically redundant manipulators. In: Siciliano, B., Khatib, O. (Eds.). Handbook of Robotics. Springer-Verlag, Berlin Heidelberg, Ch. 11, pp. 245-268

Chiaverini, S., 1997. Singularity Robust Task-Priority Redundancy Resolution for Real-Time Kinematic Control of Robot Manipulators. IEEE Transactions on Robotics and Automation 13, pp. 398-410. DOI: 10.1109/70.585902

Cho, W., Shimer, A.L., Shen, F.H., 2011. Complications associated with posterior lumbar surgery. Seminars in Spine Surgery 23, pp. 101-113. DOI: 10.1053/j.semss.2010.12.013

Cinquin, P., 2011. How today’s robots work and perspectives for the future. Journal of Visceral Surgery 148, pp. e12–e18. DOI: 10.1016/j.jviscsurg.2011.08.003

Craig, J., 1986. Introduction to robotics. Mechanics and control. AddisonWesley. Stanford, USA.

Faraj, A.A., Webb, J.K., 1997. Early complication of spinal pedicle screw. European Spine Journal 6, pp. 324-326. DOI: 10.1007/BF01142678

Flaquer, J., Olaizola, J., Olaizola, J., 2004. Curso de álgebra lineal. Eunsa – Ediciones Universidad de Navarra. Pamplona. España

Galvani, C., Horgan, S., 2005. Robots en cirugía general: presente y futuro. Cirugía Española 78, 138-147. DOI: 10.1016/S0009-739X(05)70907-6

Gomes, P., 2011. Surgical robotics: Reviewing the past, analyzing the present, imagining the future. Robotics and Computer-Integrated Manufacturing 27, pp. 261-266. DOI: 10.1016/j.rcim.2010.06.009

Khatib, O., 1986. Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research 5, pp. 90-98. DOI: 10.1109/ROBOT.1985.1087247

Kragic, D., Marayong, P., Li, M., Okamura, A.M., Hager, G.D., 2005. Human– machine collaborative systems for microsurgical applications. The International Journal of Robotics Research 24, pp. 731-741. DOI: 10.1177/0278364905057059

Landeira Freire, M.A., Ramos, J.C., Sánchez, E., 2013. Robot-assisted surgical platform for controlled bone drilling: experiments on temperature monitoring for assessment of thermal bone necrosis. In: XIII Mediterranean Conference on Medical and Biological Engineering and Computing. Sevilla, España. 2013.

Lanfranco, A.R., Castellanos, A.E., Desai, J.P., Meyers, W.C., 2004. Robotic surgery: a current perspective. Annals of surgery 239, pp. 14-21. DOI: 10.1097/01.sla.0000103020.19595.7d

Lee, J., Hwang, I., Kim, K., Choi, S., Chung, W.K., Kim, Y.S., 2009. Cooperative robotic assistant with drill-by-wire end-effector for spinal fusion surgery. Industrial Robot: An International Journal 36, pp. 60-72. DOI: 10.1108/01439910910924684

Livernaeaux, P., Nectoux, E., Taleb, C., 2009. The future of robotics in hand surgery. Chirurgie de la main 28, pp. 278-285. DOI: 10.1016/j.main.2009.08.002

Maciejewski, A.A., Klein, C.A., 1988. Numerical filtering for the operation of robotic manipulators through kinematically singular configurations. Journal of Robotic Systems 5, pp. 527-552. DOI: 10.1002/rob.4620050603

McBeth, P.B., Louw, D.F., Rizun, P.R., Sutherland, G.R., 2004. Robotics in neurosurgery. The American Journal of Surgery 188 (Suppl. to October 2004), pp. 68S–75S. DOI: 10.1016/j.amjsurg.2004.08.004

Melo, J., Bertelsen, A., Borro, D., Sánchez, E., 2012. Controlador adaptativo de admitancia para la generación de restricciones virtuales de movimiento en un asistente robótico para cirugía de fijación transpedicular. Dyna 87, pp. 647-654. DOI: 10.6036/DYNAII

Nakai, K., Kosuge, K., Hirata, Y., 2002. Control of robot in singular configurations for human-robot coordination. In: IEEE Int. Workshop on Robot and Human Interactive Comunication. Berlin, Alemania. 2002; pp. 356-361

Nakamura, Y., Hanafusa, H., 1986. Inverse kinematics solutions with singularity robustness for robot manipulator control. Journal of Dynamic Systems, Measurement and Control 108, pp. 163-171. DOI: 10.1115/1.3143764

Nakamura, Y., 1991. Advanced Robotics – Redundancy and Optimization. Addison-Wesley. Stanford. USA.

Ortmaeir, T., Weiss, H., Hagn, U., Grebenstein, M., Nickl, M., Albu-Schäffer, A., Otto, C., Jörg, S., Konietschke, R., Le-Tien, L., Hirzinger, G., 2006 (a). A hands-on-robot for accurate placement of pedicle screws. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, pp. 4179-4186. DOI: 10.1109/ROBOT.2006.1642345

Ortmaeir, T., Weiss, H., Döbele, S., Schreiber, U., 2006 (b). Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement. The International Journal of Medical Robotics and Computer Assisted Surgery 2, pp. 350-363. DOI: 10.1002/rcs.114

Peshkin, M., Colgate, J., Wannasuphoprasit, W., Moore, C., Gillespie, R., Akella, P., 2001. Cobot architecture. IEEE Transactions on Robotics and Automation 17, pp. 377-390. DOI: 10.1109/70.954751

Rabinowitz, R.S., Currier, B.L., 1997. Transpedicular screw fixation of the lumbar spine: review and technique. Operative Techniques in Orthopaedics 7, pp. 71-78. DOI: 10.1016/S1048-6666(97)80025-0

Rubí, J., Rubio, A., Avello, A., 2002. Involving the operator in a singularity avoidance strategy for a redundant slave manipulator in a teleoperated application. In: IEEE International Conference on Intelligent Robots and Systems. Lausanna, Suiza. 2002. DOI: 10.1109/IRDS.2002.1041724

Seraji, H., 1994. Adaptive admittance control: An approach to explicit force control in compliant motion. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2705-2712. DOI: 10.1109/ROBOT.1994.350927

Shoham, M., Burman, M., Zehavi, E., Joskowicz, L., Batkilin, E., Kunicher, Y., 2003. Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Transactions on Robotics 19, pp. 893-901. DOI: 10.1109/TRA.2003.817075

Sciavicco, L., Siciliano, B., 2001. Modelling and control of robot manipulators. Springer-Verlag. Londres. Reino Unido.

Siciliano, B., 1990. Kinematic control of redundant robot manipulators: a tutorial. Journal of Intelligent Robotic Systems 3, pp. 201-212. DOI: 10.1007/BF00126069

Tovar-Arriaga, S., Tita, R., Pedraza-Ortega, J.C., Gorrostieta, E., Kalender, W.A., 2011. Development of a robotic FD-CT-guided navigation system for needle placement – preliminary accuracy tests. The International Journal of Medical Robotics and Computer Assisted Surgery 7, pp. 225- 236. DOI: 10.1002/rcs.393

Wampler, C.W., Leifer, L.J., 1988. Applications of damped least-squares methods to resolved-rate and resolved-acceleration control of manipulators, Journal of Dynamic Systems, Measurement, and Control 110, pp. 31-38. DOI: 10.1115/1.3152644

Wang, J., Li, Y., Zhao, X., 2010. Inverse Kinematics and Control of a 7-DoF Redundant Manipulator Based on the Closed-Loop Algorithm. International Journal of Advanced Robotic Systems 7, pp. 1-9.

Wu, H., Gao, Z., Wang, J., Li, Y., Xia, P., Jiang, R., 2010. Pedicle screw placement in the thoracic spine: a randomized comparison study of computer-assisted navigation and conventional techniques. Chinese Journal of Traumatology 13, pp. 201-205. DOI: 10.3760/cma.j.issn.1008-1275.2010.04.002

Yoshikawa, T., 1984. Analysis and control of robot manipulators with redundancy. En: Robotics Research the First International Symposium: MIT Press, Ch 8, pp. 735-747

Descargas

Cómo citar

Landeira Freire, M. A., Sánchez, E., Tejada, S. y Díez, R. (2015) «Desarrollo e implementación de una estrategia de gestión de singularidades para un sistema robótico redundante cooperativo destinado a la asistencia en intervenciones quirúrgicas», Revista Iberoamericana de Automática e Informática industrial, 12(1), pp. 80–91. doi: 10.1016/j.riai.2014.05.007.

Número

Sección

Sección especial