Evaluation of the stability of rocky slopes using 3D point clouds obtained from an unmanned aerial vehicle


  • R. Tomás Universidad de Alicante https://orcid.org/0000-0003-2947-9441
  • A. Riquelme Universidad de Alicante
  • M. Cano Universidad de Alicante
  • J.L. Pastor Universidad de Alicante
  • J.I. Pagán Universidad de Alicante
  • J.L. Asensio Terabee
  • M. Ruffo Terabee




UAV, 3D point cloud, discontinuity, rocky slope, slope stability


In this work, a methodology proposed for the semiautomatic identification of discontinuities and the later kinematic and stability analyses is described through its application to a rocky railway line cutting. Image acquisition has been performed using a six-rotors unmanned aerial vehicle for their subsequent photogrammetric restitution by means of the digital technique Structure from Motion (SfM) by means of the software Agisoft Metashape that provides a 3D point cloud. From this 3D point cloud, four discontinuity sets (J1, J2, J3 and J4) affecting the cutting have been identified using the open source software Discontinuity Set Extractor (DSE). Finally, kinematic and stability analyses of the potential block failures controlled by the discontinuities identified in the cutting. The results show three potential wedge and planar failures that have been qualitatively validated trough the geometric analysis of the 3D point cloud.


Download data is not yet available.

Author Biographies

R. Tomás, Universidad de Alicante

Departamento de Ingeniería Civil
Universidad de Alicante

A. Riquelme, Universidad de Alicante

Departamento de Ingeniería Civil
Universidad de Alicante

M. Cano, Universidad de Alicante

Departamento de Ingeniería Civil
Universidad de Alicante

J.L. Pastor, Universidad de Alicante

Departamento de Ingeniería Civil
Universidad de Alicante

J.I. Pagán, Universidad de Alicante

Departamento de Ingeniería Civil
Universidad de Alicante

J.L. Asensio, Terabee

M. Ruffo, Terabee


Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N.J., Lim, M., Lato, M.J. 2014. Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39, 80-97. https://doi.org/10.1002/esp.3493

Agisoft LLC. 2020. Agisoft Metashape. St. Petersburg, Russia, https://www.agisoft.com/.

Ansari, M.K., Ahmed, M., Rajesh Singh, T.N., Ghalayani, I. 2015. Rainfall, A Major Cause for Rockfall Hazard along the Roadways, Highways and Railways on Hilly Terrains in India. Springer International Publishing, Cham, 457-460. https://doi.org/10.1007/978-3-319-09300-0_87

Botev, Z.I., Grotowski, J.F., Kroese, D.P. 2010. Kernel density estimation via diffusion. Ann. Statist., 38, 2916-2957. https://doi.org/10.1214/10-AOS799

brgm. 2020. Carte géologique 1/50 000 vecteur harmonisée (BRGM). World Wide Web Address: http://infoterre.brgm.fr/viewer/MainTileForward.do

Ester, M., Kriegel, H.-P., Sander, J., Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise KDD, 96, 226-231.

Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L., Carbonneau, P.E. 2013. Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38, 421-430. https://doi.org/10.1002/esp.3366

Gigli, G., Casagli, N. 2011. Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. International Journal of Rock Mechanics and Mining Sciences, 48, 187-198, https://doi.org/10.1016/j.ijrmms.2010.11.009

Girardeau-Montant, D. 2016. CloudCompare v2.6.2 64 bit. https://www.danielgm.net/cc/

González de Vallejo, L., Ferrer, M. 2011. Geological Engineering 1ed. https://doi.org/10.1201/b11745

Goodman, R.E., Shi, G. 1985. Block Theory and Its Applications to Rock Engineering. Prentice-Hall, Englewood Cliffs, N.J.

Hungr, O., Evans, S.G., Hazzard, J. 1999. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Canadian Geotechnical Journal, 36, 224-238. https://doi.org/10.1139/t98-106

James, M.R., Robson, S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117, n/a-n/a. https://doi.org/10.1029/2011JF002289

Jordá-Bordehore, L., Riquelme, A., Cano, M., Tomás, R. 2017. Comparing manual and remote sensing field discontinuity collection used in kinematic stability assessment of failed rock slopes. International Journal of Rock Mechanics and Mining Sciences, 97, 24-32. https://doi.org/10.1016/j.ijrmms.2017.06.004

Lato, M.J., Vöge, M. 2012. Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. International Journal of Rock Mechanics and Mining Sciences, 54, 150-158. https://doi.org/10.1016/j.ijrmms.2012.06.003

Micheletti, N., Chandler, J.H., Lane, S.N. 2015. Structure from motion (SFM) photogrammetry. In: Clarke, L.E. & Nield, J.M. (eds.) Geomorphological Techniques. British Society for Geomorphology, London.

Miller, S.M. 1988. Modeling Shear Strength at Low Normal Stresses for Enhanced Rock Slope Engineer-ing. In: Youd, T.L., Case, W.F., Keane, E.G. & Rausher, L.H. (eds.) 39th Highway Geology Symposium. Brigham Young University Press, North Caroline, USA, 346-356.

Riquelme, A., Araújo, N., Cano, M., Pastor, J.L., Tomás, R., Miranda, T. 2020a. Identification of Persistent Discontinuities on a Granitic Rock Mass Through 3D Datasets and Traditional Fieldwork: A Comparative Analysis. In: Correia, A.G., Tinoco, J., Cortez, P. & Lamas, L. (eds.) Information Technology in Geo-Engineering. Springer International Publishing, Cham, 868-878. https://doi.org/10.1007/978-3-030-32029-4_73

Riquelme, A., Cano, M., Tomás, R., Abellán, A. 2017. Identification of Rock Slope Discontinuity Sets from Laser Scanner and Photogrammetric Point Clouds: A Comparative Analysis. Procedia Engineering, 191, 838-845. https://doi.org/10.1016/j.proeng.2017.05.251

Riquelme, A., Tomás, R., Cano, M., Pastor, J.L., Abellán, A. 2018. Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mechanics and Rock Engineering, 51, 30053028, https://doi.org/10.1007/s00603-018-1519-9

Riquelme, A.J. 2015. Uso de nubes de puntos 3D para identificación y caracterización de familias de discontinuidades planas en afloramientos rocosos y evaluación de la calidad geomecánica, Universidad de Alicante.

Riquelme, A.J., Abellán, A., Tomás, R. 2015. Discontinuity spacing analysis in rock masses using 3D point clouds. Engineering Geology, 195, 185-195. https://doi.org/10.1016/j.enggeo.2015.06.009

Riquelme, A.J., Abellán, A., Tomás, R., Jaboyedoff, M. 2014. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers & Geosciences, 68, 38-52. https://doi.org/10.1016/j.cageo.2014.03.014

Riquelme, A.J., Abellán, A., Tomás, R, Jaboyedoff, M. 2020b. Discontinuity Set Extractor World Wide Recuperado de https://personal.ua.es/en/ariquelme/ discontinuity-set-extractor-software.html

Riquelme, A.J., Tomás, R., Abellán, A. 2016. Characterization of rock slopes through slope mass rating using 3D point clouds. International Journal of Rock Mechanics and Mining Sciences, 84, 165-176. https://doi.org/10.1016/j.ijrmms.2015.12.008

Rocscience Inc. 2020a. RocPlane. Toronto, Canada. https://www.rocscience.com/software/rocplane

Rocscience Inc. 2020b. SWedge. Toronto, Canada. https://www.rocscience.com/software/swedge

Royán, M., Abellán, A., Jaboyedoff, M., Vilaplana, J. & Calvet, J. 2014. Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR. Landslides, 11, 697-709. https://doi.org/10.1007/s10346-013-0442-0

Slob, S. 2010. Automated rock mass characterization using 3D terrestrial laser scanner, Technical University of Delf.

Sturzenegger, M., Stead, D. 2009a. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106, 163-182. https://doi.org/10.1016/j.enggeo.2009.03.004

Sturzenegger, M., Stead, D. 2009b. Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat. Hazards Earth Syst. Sci., 9, 267-287. https://doi.org/10.5194/nhess-9-267-2009

Sturzenegger, M., Stead, D., Elmo, D. 2011. Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Engineering Geology, 119, 96-111, https://doi.org/10.1016/j.enggeo.2011.02.005

Tomás, R., Pagán, J.I., Riquelme, A., Cano, M., Pastor, J.L. 2019. Kinematic Analysis Tool, KAT. Disponible en http://hdl.handle.net/10045/90669

Tomás, R., Riquelme, A., Cano, M.A., Jordá, L. 2016. Structure from Motion (SfM): una técnica fotogramétrica de bajo coste para la caracterización y monitoreo de macizos rocosos. 10º Simposio Nacional Ingeniería Geotécnica, La Coruña.

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M. 2012. 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021

Zhou, X., Chen, J., Chen, Y., Song, S., Shi, M., Zhan, J. 2017. Bayesian-based probabilistic kinematic analysis of discontinuity-controlled rock slope instabilities. Bulletin of Engineering Geology and the Environment, 76, 1249-1262. https://doi.org/10.1007/s10064-016-0972-5





Research articles