Semiautomatic detection of burnt areas in Chimborazo-Ecuador using dNBR mean composites with adjusted thresholds




Landsat, fire, paramo, dNBR, threshold


A semi-automatic methodology was implemented for the delimitation of burning areas in the province of Chimborazo in Ecuador, during the period 2018-2021, by using the database of forest fires provided by the “Amazonia sin fuego” program of the “Ministerio de Ambiente Agua y Trnacisión Ecológica” (MAATE). The collections of atmospherically corrected Landsat 7 and Landsat 8 images available on the Google Earth Engine (GEE) platform were used. To delimit the burning areas, mean composite images of normalized burning indices (NBR) were calculated in GEE and the most appropriate thresholds of the difference of normalized burning indices (dNBR) were evaluated above which the burning for paramo ecosystem is delimited. The results show: (a) the dNBR threshold value, based on Landsat 7 and Landsat 8 composite mean images, that best fits to identify burning areas in the study area is 0.15; (b) nine events with areas equal to or greater than 100 ha were found, but only seven could be located; (c) most of the burned areas recorded in the MAATE database were overestimated from 25.2% to 84.9% compared to the burn areas digitized on satellite images. These findings provide information that contributes to the strengthening of national fire statistics, useful for the construction of public policies for monitoring and managing forest fires in Ecuador.


Download data is not yet available.


Bilbao, B., Steil, L., Urbieta, I., Anderson, L., Pinto, C., González, M., … Moreno, J. 2020. Incendios forestales. En Adaptación frente a los riesgos del cambio climático en los países iberoamericanos (McGraw-Hil, pp. 459-524). Madrid.

Cabrera, J. Z., Guerrero, J. Q., Belén, M., Salto, L. y Mora Encalada, C. 2020. Algoritmo Semiautomático para Mapear Incendios Forestales y Estimar la Recuperación Vegetal Mediante Imágenes Landsat-8. Revista Tecnológica - ESPOL, 32(2), 35-42.

Carrión-Paladines, V., Belén Hinojosa, M., Jiménez Álvarez, L., Reyes-Bueno, F., Correa Quezada, L. y García-Ruiz, R. 2022. Effects of the severity of wildfires on some physical-chemical soil properties in a humid montane scrublands ecosystem in Southern Ecuador. Fire, 5(3), 66.

Celi Díaz, S., Correa Quezada, L., Jiménez Álvarez, L., Loján-Córdova, J. y Carrión-Paladines, V. 2023. Indigenous use of fire in the paramo ecosystem of southern Ecuador: a case study using remote sensing methods and ancestral knowledge of the Kichwa Saraguro people. Fire Ecology, 19(1), 1-18.

Chuvieco, E., Mouillot, F., van der Werf, G. R., San Miguel, J., Tanasse, M., Koutsias, N., … Giglio, L. 2019. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sensing of Environment, 225, 45-64.

Delegido, J., Pezzola, A., Casella, A., Winschel, C., Urrego, E. P., Jiménez, J. C., … Moreno, J. 2018. Fire severity estimation in southern of the Buenos Aires province, Argentina, using Sentinel-2 and its comparison with Landsat-8. Revista de Teledetección, (51), 47-60.

Dice, L. R. 1945. Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3), 297-302.

Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z.- L., Quayle, B. y Howard, S. 2007. A Project for Monitoring Trends in Burn Severity. Fire Ecology 2007 3:1, 3(1), 3-21.

Espinoza, V. M., Quinchuela, M. F., Lara Vasconez, N. y Espinoza, A. 2017. Propuesta de un modelo de gestión para la prevención de incendios forestales en pinus radiata en la comunidad Ganquis provincia de Chimborazo. European Scientific Journal, ESJ, 13(23), 222-222.

Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T., … Laue, B. 2017. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390.

GADPCH. 2015. Plan de Desarrollo y Ordenamiento Territorial de la provincia de Chimborazo. Riobamba. Recuperado a partir de file/d/1EzRt-q-q7RN6Cg-t6tjG8Hj4jraXU5qn/view

GADPCH. 2020. Plan de desarrollo y ordenamiento territorial de la provincia de Chimborazo. Riobamba, GADPCH. Recuperado a partir de

Galindo, G., Sarango, J. y Villarroel, V. 2012. Los incendios forestales en el Distrito Metropolitano de Quito. Evaluación 2012. Quito-Ecuador.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. y Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27.

Instituto Geográfico Militar del Ecuador. 2013. Capas de información geográfica básica del IGM de libre acceso. Recuperado el 9 de enero de 2023, de

Instituto Geográfico Militar del Ecuador. 2023. Visor de datos geográficos oficiales. Recuperado el 9 de enero de 2023, de

Key, C. y Benson, N. 2006. Landscape Assessment (LA). FIREMON: Fire effects monitoring and inventory system. Dep.of Agriculture, Forest Service.p LA-1-55. Fort Collins, CO.

MAATE. 2023. Estadísticas de Incendios Forestales, Ecuador. Quito.

Morante-Carballo, F., Bravo-Montero, Lady, CarriónMero, P., Velastegui-Montoya, A. y Berrezueta, E. 2022. Forest Fire Assessment Using Remote Sensing to Support the Development of an Action Plan Proposal in Ecuador. Remote Sensing, 14(8), 1783.

Parks, S. A., Holsinger, L. M., Voss, M. A., Loehman, R. A. y Robinson, N. P. 2018. Mean Composite Fire Severity Metrics Computed with Google Earth Engine Offer Improved Accuracy and Expanded Mapping Potential. Remote Sensing, 10(6), 879.

Pazmiño, D. 2019. Peligro de incendios forestales asociado a factores climáticos en Ecuador. FIGEMPA: Investigación y Desarrollo, 1(1), 10-18.

Programa Amazonía sin fuego- PASF. (s/f). Recuperado el 10 de enero de 2023, de

Ramsay, P. M. 2001. Páramo vegetation recovery in the first two years after a fire on Volcán Chiles, Ecuador. The Ecology of Volcán Chiles: highaltitude ecosystems on the Ecuador-Colombia border. Plymouth: Pebble & Shell Plymouth.

Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. y Morton, D. C. 2012. Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research-Biogeosciences, 117.

Sánchez, R., Briones, M. J., Gamboa, A., Monsalve, R., Berroeta, D. y Valenzuela, L. 2023. Delimitation of burned areas in Chile based on dNBR thresholds adjusted according to region and land cover. Revista de Teledetección, 2023(61), 43-58.

Santana, O. J., Hernández-Sosa, D., Martz, J. y Smith, R. N. 2020. Neural Network Training for the Detection and Classification of Oceanic Mesoscale Eddies. Remote Sensing 2020, Vol. 12, Page 2625, 12(16), 2625.

Schmidt, G. L., Jenkerson, C., Masek, J. G., Vermote, E. y Gao, F. 2013. Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description. US Department of the Interior, US Geological Survey.

Sorensen, T. A. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar., 5, 1-34.

Soverel, N. O., Coops, N. C., Perrakis, D. D. B., Daniels, L. D. y Gergel, S. E. 2011. The transferability of a dNBR-derived model to predict burn severity across 10 wildland fires in western Canada. International Journal of Wildland Fire, 20(4), 518-531.

Veraverbeke, S., Lhermitte, S., Verstraeten, W. W. y Goossens, R. 2010. The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: The case of the large 2007 Peloponnese wildfires in Greece. Remote Sensing of Environment, 114(11), 2548-2563.

Vermote, E., Justice, C., Claverie, M. y Franch, B. 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185, 46-56.

Zheng, B., Ciais, P., Chevallier, F., Chuvieco, E., Chen, Y. y Yang, H. 2021. Increasing forest fire emissions despite the decline in global burned area. Science Advances, 7(39).





Practical cases