Improving the evapotranspiration estimation by coupling soil moisture and atmospheric variables in the relative evapotranspiration parameterization

Authors

DOI:

https://doi.org/10.4995/raet.2024.20158

Keywords:

evapotranspiration, land covers, atmospheric variables, soil moisture, relative evapotranspiration

Abstract

Accurate monthly evapotranspiration (ET) estimation is essential for many forest, climate, and hydrological applications, as well as for some agricultural uses. In this study, the relationship between ET and relative evapotranspiration (F) using land surface, and atmospheric variables was assessed with 17 FLUXNET sites data in savanna, cropland, and forest land covers, distributed all over the world. A sigmoid (Fs) and a logarithmic (Fl) F expression were included in Walker et al.’s (2019a,b) equations to evaluate their impact on the accuracy of ET estimations. The new parameterizations of ET outperformed the original expression, showing root mean square errors lower than 24% of the mean observed ET. The results presented here suggest that atmospheric parameters, coupled with land explanatory variables included in F estimates, produce more precise ET estimations. In addition, Soil Moisture Active Passive (SMAP) products were used to obtain global maps of ET and compared with Global Landsurface Evaporation Amsterdam Methodology (GLEAM) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16 products, displaying the flexibility of these new parametrizations with different sources of data.

Downloads

Download data is not yet available.

References

Allen, R., Morse, A., Tasumi, M., Bastiaanssen, W., Kramber, W., Anderson, H. 2001. Evapotranspiration from Landsat (SEBAL) for water rights management and compliance with multi-state water compacts. In IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 Int. Geoscience and Remote Sensing Symposium.

An, N., Tang, C.S., Xu, S.K., Gong, X.P., Shi, B., Inyang, H.I., 2018. Effects of Soil Characteristics on Moisture Evaporation. Eng. Geol., 239, 126-135. https://doi.org/10.1016/j.enggeo.2018.03.028

Bagley, J.E., Kueppers, L.M., Billesbach, D.P., Williams, I.N., Biraud, S.C., Torn, M.S., 2017. The Influence of Land Cover on Surface Energy Partitioning and Evaporative Fraction Regimes in the U.S. Southern Great Plains. J. Geophys. Res., 122, 5793-5807. https://doi.org/10.1002/2017JD026740

Bouchet, R.J., 1963 Évapotranspiration Réelle Et Potentielle Signification Climatique. Int. Assoc. Sci. Hydrol., 62, 134-162.

Bretscher, O., 1995. Linear Algebra With Applications, third ed. Upper Saddle River, NJ: Prentice Hall.

Brust, C., Kimball, J.S., Maneta, M.P., Jencso, K., He, M., Reichle, R.H., 2021. Using SMAP Level-4 Soil Moisture to Constrain MOD16 Evapotranspiration over the Contiguous USA. Remote Sens. Environ., 255, 112277. https://doi.org/10.1016/j.rse.2020.112277

Brutsaert, W. A., 2015. Generalized Complementary Principle with Physical Constraints for Land-Surface Evaporation Wilfried. Water Resour. Res., 51, 8087-8093. https://doi.org/10.1002/2015WR017720

Cosby, B.J., Hornberger, G.M., Clapp, R.B., Ginn, T.R., 1984. A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water Resour. Res., 20, 682-690. https://doi.org/10.1029/WR020i006p00682

Detto, M., Montaldo, N., Albertson, J.D., Mancini, M., Katul, G., 2006. Soil Moisture and Vegetation Controls on Evapotranspiration in a Heterogeneous Mediterranean Ecosystem on Sardinia, Italy. Water Resour. Res., 42, 1-16. https://doi.org/10.1029/2005WR004693

Entekhabi, D., Yueh, S., O'Neill, P.E., Kellog, K.H., Allen, A., Bindlish, R., Das, N., et al. 2014. SMAP Handbook-Soil Moisture Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space. National Aeronautic Space Administration.

Fisher, J.B., Tu, K.P., Baldocchi, D.D., 2008. Global Estimates of the Land-Atmosphere Water Flux Based on Monthly AVHRR and ISLSCP-II Data, Validated at 16 FLUXNET Sites. Remote Sens. Environ., 112, 901-919. https://doi.org/10.1016/j.rse.2007.06.025

Fisher, J.B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R.,... & Wood, E.F. (2017). The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water resources research, 53(4), 2618-2626. https://doi.org/10.1002/2016WR020175

Granger, R.J., 1989. A Complementary Relationship Approach for Evaporation from Nonsaturated Surfaces. J. Hydrol., 111, 31-38. https://doi.org/10.1016/0022-1694(89)90250-3

Khan, M., Liaqat, U., Baik, J., Choi, M. (2018). Standalone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agricultural and Forest Meteorology, 252, 256-268. https://doi.org/10.1016/j.agrformet.2018.01.022

Khan, S.M., Baik, J., Choi, M., 2020. Inter-Comparison of Evapotranspiration Datasets over Heterogeneous Landscapes across Australia. Adv. Sp. Res., 66, 533-545. https://doi.org/10.1016/j.asr.2020.04.037

Komatsu, T.S., 2003. Toward a Robust Phenomenological Expression of Evaporation Efficiency for Unsaturated Soil Surfaces. J. Appl. Meteorol., 42, 1330-1334. https://doi.org/10.1175/1520-0450(2003)042<1330:TARPEO>2.0.CO;2

Laipelt, L., Kayser, R., Fleischmann, A., Ruhoff, A., Bastiaanssen, W., Erickson, T. Melton, F. (2021). Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 81-96. https://doi.org/10.1016/j.isprsjprs.2021.05.018

Li, Z., Li, Y., Bonsal, B., Manson, A.H., Scaff, L., 2018. Combined Impacts of ENSO and MJO on the 2015 Growing Season Drought on the Canadian Prairies. Hydrol. Earth Syst. Sci., 22, 5057-5067. https://doi.org/10.5194/hess-22-5057-2018

Liu, J., You, Y., Li, J., Sitch, S., Gu, X., Nabel, J.E.,... & Kong, D. (2021). Response of global land evapotranspiration to climate change, elevated CO2, and land use change. Agricultural and Forest Meteorology, 311, 108663. https://doi.org/10.1016/j.agrformet.2021.108663

Liu, Z., 2022. Estimating Land Evapotranspiration from Potential Evapotranspiration Constrained by Soil Water at Daily Scale. Sci. Total Environ., 834, 155327. https://doi.org/10.1016/j.scitotenv.2022.155327

Ma, N., Szilagyi, J., Jozsa, J., 2020. Benchmarking Large-Scale Evapotranspiration Estimates: A Perspective from a Calibration-Free Complementary Relationship Approach and FLUXCOM. J. Hydrol., 590. https://doi.org/10.1016/j.jhydrol.2020.125221

Mintz, Y., Walker, G.K., 1993. Global Fields of Soil Moisture and Land Surface Evapotranspiration Derived from Observed Precipitation and Surface Air Temperature. J. Appl. Meteorol., 32, 1305-1334. https://doi.org/10.1175/1520-0450(1993)032<1305:GFOSMA>2.0.CO;2

Mu, Q., Zhao, M., Running, S.W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 1781-1800. https://doi.org/10.1016/j.rse.2011.02.019

Orth, R., Koster, R.D., Seneviratne, S.I., 2013. Inferring Soil Moisture Memory from Streamflow Observations Using a Simple Water Balance Model. J. Hydrometeorol., 14, 1773-1790. https://doi.org/10.1175/JHM-D-12-099.1

Poulos, H., Barton, A., Koch, G., Kolb, T., Thode, A. 2021. Wildfire severity and vegetation recovery drive post-fire evapotranspiration in a southwestern pine-oak forest, Arizona, USA. Remote Sens in Ecology and Conservation, 7(4), 579-591. https://doi.org/10.1002/rse2.210

Purdy, A.J., Fisher, J.B., Goulden, M.L., Colliander, A., Halverson, G., Tu, K., Famiglietti, J.S., 2018. SMAP Soil Moisture Improves Global Evapotranspiration. Remote Sens. Environ., 219, 1-14. https://doi.org/10.1016/j.rse.2018.09.023

Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., et al., 2004. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc., 85, 381-394. https://doi.org/10.1175/BAMS-85-3-381

Salazar-Martínez, D., Holwerda, F., Holmes, T., Yépez, E.A., Hain, C.R., Alvarado-Barrientos, S., Vivoni, E. 2022. Evaluation of remote sensing-based evapotranspiration products at low-latitude eddy covariance sites. Journal of Hydrology, 610, 127786. https://doi.org/10.1016/j.jhydrol.2022.127786

Short Gianotti, D.J., Rigden, A.J., Salvucci, G.D., Entekhabi, D., 2019. Satellite and Station Observations Demonstrate Water Availability's Effect on Continental-Scale Evaporative and Photosynthetic Land Surface Dynamics. Water Resour. Res., 55, 540-554. https://doi.org/10.1029/2018WR023726

Sun, Z., Wei, B., Su, W., Shen, W., Wang, C., You, D., & Liu, Z. (2011). Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Mathematical and Computer Modelling, 54(3-4), 1086-1092. https://doi.org/10.1016/j.mcm.2010.11.039

Teng, J., Yasufuku, N., Liu, Q., Liu, S., 2014. Experimental Evaluation and Parameterization of Evaporation from Soil Surface. Nat. Hazards, 73, 1405-1418. https://doi.org/10.1007/s11069-014-1138-z

Venturini, V., Islam, S., Rodriguez, L., 2008. Estimation of Evaporative Fraction and Evapotranspiration from MODIS Products Using a Complementary Based Model. Remote Sens. Environ., 112, 132-141. https://doi.org/10.1016/j.rse.2007.04.014

Venturini, V., Rodriguez, L., Bisht, G., 2011. A Comparison among Different Modified Priestley and Taylor Equations to Calculate Actual Evapotranspiration with MODIS Data. Int. J. Remote Sens., 32, 1319-1338. https://doi.org/10.1080/01431160903547965

Von Seggern, D.H, 2007. CRC standard curves and surfaces with mathematica, second ed. CRC Press.

Walker, E., García, G.A., Venturini, V., 2019a. Evapotranspiration Estimation Using SMAP Soil Moisture Products and Bouchet Complementary Evapotranspiration over Southern Great Plains. J. Arid Environ., 163, 34-40. https://doi.org/10.1016/j.jaridenv.2019.01.002

Walker, E., García, G.A., Venturini, V., Carrasco, A., 2019b. Regional Evapotranspiration Estimates Using the Relative Soil Moisture Ratio Derived from SMAP Products. Agric. Water Manag., 216, 254-263. https://doi.org/10.1016/j.agwat.2019.02.009

Walker, E., Venturini, V., 2019. Land Surface Evapotranspiration Estimation Combining Soil Texture Information and Global Reanalysis Datasets in Google Earth Engine. Remote Sens. Lett., 10, 929-938. https://doi.org/10.1080/2150704X.2019.1633487

Yang, X., Yong, B., Ren, L., Zhang, Y., Long, D., 2017. Multi-Scale Validation of GLEAM Evapotranspiration Products over China via ChinaFLUX ET Measurements. Int. J. Remote Sens., 38, 5688-5709. https://doi.org/10.1080/01431161.2017.1346400

Yao, Y., Liao, X., Xiao, J., He, Q., Shi, W., 2023. The Sensitivity of Maize Evapotranspiration to Vapor Pressure Deficit and Soil Moisture with Lagged Effects under Extreme Drought in Southwest China. Agric. Water Manag., 277, 108101. https://doi.org/10.1016/j.agwat.2022.108101

Yunfei, L., Dongwei, G., Changjun, Y., Lei, Z., Dongping, X., Yi, L., Fanjiang, Z., Ahmed, Z., Xiaoping, C., 2023. Estimating the Temporal and Spatial Variations in Evapotranspiration with a Nonlinear Evaporation Complementary Relationship Model in Hyper-Arid Areas. Water Resour. Manag., 37, 521-535. https://doi.org/10.1007/s11269-022-03384-x

Zhou, S., Williams, A.P., Lintner, B.R., Berg, A.M., Zhang, Y., Keenan, T.F., Cook, B.I., Hagemann, S., Seneviratne, S.I., Gentine, P., 2021. Soil Moisture-Atmosphere Feedbacks Mitigate Declining Water Availability in Drylands. Nat. Clim. Chang., 11, 38-44. https://doi.org/10.1038/s41558-020-00945-z

Zhu, W., Tian, S., Wei, J., Jia, S., Song, Z. (2022). Multiscale evaluation of global evapotranspiration products derived from remote sensing images: Accuracy and uncertainty. Journal of Hydrology, 611, 127982. https://doi.org/10.1016/j.jhydrol.2022.127982

Zscheischler, J., Orth, R., Seneviratne, S.I., 2015. A Sub-Monthly Database for Detecting Changes in Vegetation-Atmosphere Coupling. Geophys. Res. Lett., 42, 9816-9824. https://doi.org/10.1002/2015GL066563

Downloads

Published

2024-01-30

Issue

Section

Research articles