TISSBERT: A benchmark for the validation and comparison of NDVI time series reconstruction methods





NDVI, gap-filling, reconstruction, dataset, comparison


This paper introduces the Time Series Simulation for Benchmarking of Reconstruction Techniques (TISSBERT) dataset, intended to provide a benchmark for the validation and comparison of time series reconstruction methods. Such methods are routinely used to estimate vegetation characteristics from optical remotely sensed data, where the presence of clouds decreases the usefulness of the data. As for their validation, these methods have been compared with previously published ones, although with different approaches, which sometimes lead to contradictory results. We designed the TISSBERT dataset to be generic so that it could simulate realistic reference and cloud-contaminated time series at global scale. To that end, we estimated both cloud-free and cloud-contaminated Normalized Difference Vegetation Index (NDVI) statistics for randomly selected control points and each day of the year from the Long Term Data Record Version 4 (LTDR-V4) dataset by assuming different statistical distributions. The best approach was then applied to the whole dataset, and validity of the results were estimated through the Kolmogorov-Smirnov statistic. The dataset elaboration is described thoroughly along with how to use it. The advantages and drawbacks of this dataset are then discussed, which emphasize the realistic simulation of the cloud-contaminated and reference time series. This dataset can be obtained from the authors upon demand. It will be used in a next paper to compare widely used NDVI time series reconstruction methods.


Download data is not yet available.

Author Biographies

Y. Julien, Universitat de València

Unidad de Cambio Global

J.A. Sobrino, Universitat de València

Unidad de Cambio Global


Beck, P., Atzberger, C., Hogda, K.A., Johansen, B. Skidmore A. 2006. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sensing of Environment, 100, 321-334. https://doi.org/ 10.1016/j.rse.2005.10.021

Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., Eklundh, L. 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sensing of Environment, 91, 332-334. https://doi.org/ 10.1016/j.rse.2004.03.014

Cho, AR., Suh, M.S. 2013. Detection of contaminated pixels based on the short-term continuity of NDVI and correction using spatio-temporal continuity. Asia-Pacific Journal of Atmospheric Sciences, 49(4), 511-525. https://doi.org/10.1007/s13143-013- 0045-7

Geng, L., Ma, M., Wang, X., Yu, W., Jia, S. and Wang, H. 2014. Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe river basin, China. Remote Sensing, 2014, 6, 2024-2049. https://doi.org/10.3390/rs6032024

Hird, J.N., McDermid, G.J. 2009. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sensing of Environment, 113, 248-258. https://doi.org/10.3390/rs6032024

Holben, B.N. 1986. Characteristics of maximum-value composite image from temporal AVHRR data. International Journal of Remote Sensing, 7, 1417- 1434. https://doi.org/10.1080/01431168608948945

Jönsson, P., Eklundh, L. 2004. TIMESAT - A program for analyzing time-series of satellite sensor data. Computers and Geoscience, 30, 833-845. https://doi.org/10.1016/j.cageo.2004.05.006

Julien, Y., Sobrino, J.A. 2009. Global land surface phenology trends from GIMMS database. International Journal of Remote Sensing, 30(13), 3495-3513. https://doi.org/ 10.1080/01431160802562255

Julien, Y., Sobrino, J.A. 2010. Comparison of cloudreconstruction methods for time series of composite NDVI data. Remote Sensing of Environment, 114, 618-625. https://doi.org/10.1016/j.rse.2009.11.001

Julien, Y., Sobrino, J.A. 2012. Correcting Long Term Data Record V3 estimated LST from orbital drift effects. Remote Sensing of Environment, 123, 207- 219. https://doi.org/10.1016/j.rse.2012.03.016

Julien, Y., Sobrino, J.A., Verhoef, W. 2006. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sensing of Environment, 103, 43-55. https://doi.org/10.1016/j.rse.2006.03.011

Ke, L., Ding, X., Song, C. 2013. Reconstruction of time series MODIS LST in central Qinghai-Tibet plateau using geostatistical approach. IEEE Geoscience and Remote Sensing Letters, 10(6), 1602-1606. https://doi.org/10.1109/LGRS.2013.2263553

Lin, C.H., Lai, K.H., Chen, Z.B., Chen, J.Y. 2014. Patch-based information reconstruction of cloud-contaminated multitemporal images. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 163-174. https://doi.org/10.1109/ TGRS.2012.2237408

Ma, M., Veroustraete, F. 2006. Reconstructing pathfinder AVHRR land NDVI timeseries data for the Northwest of China. Advances in Space Research, 37, 835-840. https://doi.org/10.1016/j.asr.2005.08.037

Michishita, R., Jin, Z., Chen, J., Xu, B. 2014. Empirical comparison of noise reduction techniques for NDVI time-series based on a new measure. ISPRS Journal of Photogrammetry and Remote Sensing, 91, 17-28. https://doi.org/10.1016/j.isprsjprs.2014.01.003

Moreno, A., García-Haro, F.J., Martínez, B., Gilabert, M.A. 2014. Noise Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local Regression Filter. Remote Sensing, 6, 8238-8260. https://doi.org/10.3390/rs6098238

Munyati, C., Mboweni, G. 2012. Variation in NDVI values with change in spatial resolution for semi-arid savanna vegetation: a case study in northwestern South Africa. International Journal of Remote Sensing, 34(7), 2253-2267. https://doi.org/10.1080/01431161.2012.743692

Pedelty, J., Devadiga, S., Masuoka, E., Brown, M., Pinzon, J., Tucker, C., et al. 2007. Generating a long-term land data record from the AVHRR and MODIS instruments. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2007, 1021-1025, https://doi.org/10.1109/IGARSS.2007.4422974

Poggio, L., Gimona, A., Brown, I. 2012. Spatiotemporal MODIS EVI gap filling under cloud cover: an example in Scotland. ISPRS Journal of Photogrammetry and Remote Sensing, 72, 56-72. https://doi.org/10.1016/j.isprsjprs.2012.06.003

Roerink, G.J., Menenti, M., Verhoef, W. 2000. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. International Journal of Remote Sensing, 21(9), 1911-1917. https://doi.org/10.1080/014311600209814

Rouse, J.W., Haas, R.H., Scheel, J.A., Deering, D.W. 1974. Monitoring Vegetation Systems in the Great Plains with ERTS. 3rd Earth Resource Technology Satellite (ERTS) Symposium Proceedings, Vol. 1, 48-62.

Sobrino, J.A. Julien, Y. 2011. Global trends in NDVI derived parameters obtained from GIMMS data. International Journal of Remote Sensing, 32(15), 4267-4279. https://doi.org/10.1080/01431161.2010 .486414

Sobrino, J.A., Julien, Y. 2016. Exploring the validity of the Long Term Data Record V4 database for land surface monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 99, 1-8, https://doi.org/10.1109/ JSTARS.2016.2567642

Swinnen, E., Veroustraete, F. 2008. Extending the SPOT-VEGETATION time series (1998-2006) back in time with NOAA-AVHRR data (1985- 1998) for Southern Africa. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 558-572. https://doi.org/10.1109/TGRS.2007.909948

Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127-150. https://doi.org/10.1016/0034-4257(79)90013-0

Tucker, C.J., Pinzon, J.E., Brown, M.E., Slayback, D.A. Pak, E.W., Mahoney, R., Vermote, E.F., El Saleous, N. 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 4485-4498. https://doi.org/10.1080/01431160500168686

van Dijk, A., Callis, S., Sakamoto, C. and Decker, W. 1987. Smoothing vegetation index profiles: An alternative method for reducing radiometric disturbance in NOAA/AVHRR data. Photogrammetric Engineering and Remote Sensing, 53, 1059-1067.

Viovy, N., Arino, O., Velward, A. 1992. The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series International Journal of Remote Sensing, 13, 1585-1590. https://doi.org/10.1080/01431169208904212

Weiss, D.J., Atkinson, P.M., Bhatt, S., Mappin, B., Hay, S.I., Gething, P.W. 2014. An effective approach for gap-filling continental scale remotely sensed time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 106-118. https://doi.org/10.1016/j.isprsjprs.2014.10.001

White, M.A., De Beurs, K.M., Didan, K., Inouye, D. W., Richardson, A.D., et al. 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology, 15, 2335-2359. https://doi.org/10.1111/j.1365-2486.2009.01910.x

Xiao, Z., Liang, S., Wang, T., Liu, Q. 2015. Reconstruction of satellite-retrieved land-surface reflectance based on temporally-continuous vegetation indices. Remote Sensing, 7, 9844-9864. https://doi.org/10.3390/rs70809844

Xu, L., Li, B., Yuan, Y., Gao, X., Zhang, T. 2015. A temporal-spatial iteration method to reconstruct NDVI time series datasets. Remote Sensing, 7, 8906- 8924. https://doi.org/10.3390/rs70708906

Yang, G., Shen, H., Zhang, L., He, Z. and Li, X. 2015. A moving weighted harmonic analysis method for reconstructing high-quality SPOT VEGETATION NDVI time-series data. IEEE Transactions on Geoscience and Remote Sensing, 53(11), 6008- 6021. https://doi.org/10.1109/TGRS.2015.2431315

Zhou, J., Jia, L. and Menenti, M. 2015. Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS). Remote Sensing of Environment, 163, 217-228. https://doi.org/10.1016/j.rse.2015.03.018






Research articles