Application of automated photogrammetry and lighting techniques with GIS tools for visualisation and analysis of a slab with anthropomorphous reliefs


  • David Torregrosa-Fuentes Universidad de Alicante
  • Yolanda Spairani Berrio Universidad de Alicante
  • José Antonio Huesca Tortosa Universidad de Alicante
  • Jaime Cuevas González Universidad de Alicante
  • Adrián José Torregrosa Fuentes Universidad Miguel Hernández



cultural heritage, digital photography, Structure from Motion (SfM) photogrammetry, 3Dmodelling, point clouds, Geographic Information Systems (GIS)


We present a methodological approach for the representation, visualisation and analysis of three-dimensional (3D) models of meaningful details in stone reliefs provided by digital documentation tools and subsequent processing. For this aim, anthropomorphous shapes engraved on a flat stone slab found in Sierra de Fontcalent (Alicante) are studied. The object under consideration was located near two archaeological sites, Cova del Fum–a cave with presence of the Chalcolithic material (López, 2010)–and the archaeological site of Fontcalent, with remains from different phases of occupation spanning from 7th-6thBC to the 20thcentury (Ximénez, 2012).

In the last few years, the use of digital tools provided by new technologies and software development has left traditional work methodology behind (De Reu et al., 2014)while enabling the development of new approaches to both minimise heritage alteration and provide objective and accurate information (Lopez-Menchero, Marchante, Vincent, Cárdenas, & Onrubia, 2017). 3D documentation allows recording of cultural heritage at a reasonable cost with precision and quality through digital photography and SfM (Structure from Motion) photogrammetry with specialised software (De Reu et al., 2013).

In this project, recording and documentation with digital photography and automated photogrammetric techniques are applied to the Fontcalent stone slab for its digitisation and subsequent 3D representation. From the resulting model, a two-folded line of study is obtained. On the one hand, a Digital Elevation Model (DEM) is generated to study the microtopographies of the stone with geographic analysis techniques provided by Geographic Information Systems (GIS) from different lighting conditions and surface reflections, which are calculated by hillshading or LRM (Local Relief Model) for the interpretation of the object (Carrero-Pazos, Vilas, Romaní, & Rodríguez, 2014;Gawior, Rutkiewicz, Malik & Wistuba, 2017).On the other hand, from both the 3D model and the point cloud, the study is completed with the application of the methods of analysis and visualisation based on the Morphological Residue Model (MRM) which stands out every single detail of the surface morphology of the object (Caninas, Pires, Henriques, & Chambino, 2016;Correia, Pires, & Sousa, 2014). Further visualisations are based on Reflectance Transformation Imaging (RTI) which provides different shadows and reflections over the object from the application of a multidirectional illumination (Happa et al., 2010; Malzbender, Gelb, Wolters, & Zuckerman, 2000; Mudge et al., 2010).

The  results thus obtained of the  Fontcalent  stone  slab  allow  us  to  visualise  several  characteristic  elements. The anthropomorphous figure awaking interest is also combined with the figure resulting from different visualisations applied with GIS techniques which may resemble a zoomorph. The use of visualisation techniques shown in this study has been fundamental in order to recognise the latter element. The composition reveals a zigzag line already appreciated before the study so that it is interesting to check if visualisations based on GIS techniques are able to highlight it though being shallow incisions. In our experience regarding this study, visualisation by using the hillshading technique shows a greater level of 3D detail than that provided by the application of the sky-view factor technique which offers a flattering view. However, the former  technique  may occasionally show  shadows  which  hide  other  details, unlike the  latter  technique  which  plots  the entire slab surface illuminated while differentiating the associated microtopography on the basis of its marks. The use of shaders  in  combination  with  hillshading  and  particularly  combined  with  high  pass filtering, contributes  to improving the visualisation and accuracy of shadowed areas. As a result, we conclude that the results obtained in this work by lighting techniques with GIS add a greater level of detail in comparison to those provided by the mesh or the point cloud.

The study of the Fontcalent stone slab paves the way for two working hypotheses to be developed: on the one hand, its anthropological origin possibly related to the Chalcolithic, and on the other hand, its study as natural geological formations with ichnofossils.

The digitisation of cultural heritage with available 3D technologies should be a mandatory requirement when facing any study, analysis or intervention.  With  the  current  development  of  such techniques, we  have  verified  their  contribution  to fundamental characteristics in the corresponding stages of visualisation and study. Thus, the proposed methodology is presented as an accurate and complete alternative for the study and analysis of the existing cultural heritage, and opens new  ways  for  the  revision,  reinterpretation  and  revaluation  of  the  previously  evaluated  heritage  through  traditional techniques.


Download data is not yet available.

Author Biographies

David Torregrosa-Fuentes, Universidad de Alicante

Departamento de Construcciones Arquitectónicas. Colaborador.

Yolanda Spairani Berrio, Universidad de Alicante

Departamento de Construcciones Arquitectónicas. Profesor titular de escuela universitaria.

José Antonio Huesca Tortosa, Universidad de Alicante

Departamento de Construcciones Arquitectónicas. Profesor asociado.

Jaime Cuevas González, Universidad de Alicante

Departamento de Ciencias de la Tierra y del Medio Ambiente. Profesor contratado doctor.

Adrián José Torregrosa Fuentes, Universidad Miguel Hernández

Departamento de Ingeniería de Comunicaciones. Profesor contratado doctor.


Campanaro, D., Landeschi, G., Dell’Unto, N., & Leander Touati, A. (2016). 3D GIS for cultural heritage restoration: A ‘white box’ workflow. Journal of Cultural Heritage, 18, 321–332. doi: 10.1016/j.culher.2015.09.006

Caninas, J., Pires, H., Henriques, F., & Chambino, M. (2016). Rock art in Portugal ́s border area. Rock Art Research. 33 (1), 79–88.

Carrero-Pazos, M., Vilas, B., Romaní, E., & Rodríguez, A. (2014). La necrópolis del Monte de Santa Mariña revisitada: aportaciones del Lidar aéreo para la cartografía megalítica de Galicia. Gallaecia: Revista de Arqueoloxía e Antigüidade, 33, 39–57.

Carrero-Pazos, M., Vázquez-Martínez, A., & Vilas-Estévez, B. (2016). As Trend: Towards a new method for the study of ancient carvings. Journal of Archaeological Science: Reports, 9, 105–119. doi: 10.1016/j.jasrep.2016.06.044

Carrero-Pazos, M., Vilas-Estévez, B., & Vázquez-Martínez, A. (2018). Digital imaging techniques for recording and analysing prehistoric rock art panels in Galicia (NW Iberia). Digital Applications in Archaeology and Cultural Heritage,8, 35–45. doi:10.1016/j.daach.2017.11.003

Corrales Álvarez, Á., Bermejo Meléndez, J., & Campos Carrasco, J. (2018). Aplicaciones SIG e infográficas en la Casa Norte del yacimiento arqueológico de Arucci (Aroche, Huelva). Virtual Archaeology Review,9(18),77–86. doi:10.4995/var.2018.6341

Correia, M. J., Pires, H., & Sousa. O., (2014). Nuevas lecturas de las inscripciones del santuario de Panóias (Vila Real, Portugal). Sylloge Epigraphica Barcinonensis (SEBarc), 12, 197–224.

De Reu, J., De Smedt, P., Herremans, D., Van Meirvenne, M., Laloo, P., & De Clercq, W. (2014). On introducing an image-based 3D reconstruction method in archaeological excavation practice. Journal of Archaeological Science, 41, 251–262. doi:10.1016/j.jas.2013.08.020

De Reu, J., Plets, G., Verhoeven, G., De Smedt, P., Bats, M., & Cherretté, B. et al. (2013). Towards a three-dimensional cost-effective registration of the archaeological heritage. Journal of Archaeological Science, 40(2), 110–1121. doi:10.1016/j.jas.2012.08.040

Diez Castillo, A., Cortell Nicolau, A., García Puchol, O., & Esribá Ruiz, P. (2017). 3D environment for the analysis and virtual reconstruction of the archaeological fieldworks at Cocina Cave (Dos Aguas, Valencia, Spain). Virtual Archaeology Review, 8(17), 75–83. doi:10.4995/var.2017.7028

Farjas, M., Moreno, E., & García Lázaro, F. (2011). La realidad virtual y el análisis científico: De la nube de puntos al documento analítico. Virtual Archaeology Review, 2(4), 139–144. doi:10.4995/var.2011.4570

Fernández-Lozano, J., & Gutiérrez-Alonso, G. (2016). Improving archaeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain). Journal of Archaeological Science: Reports, 5, 509–520. doi:10.1016/j.jasrep.2016.01.007

Gawior, D., Rutkiewicz, P., Malik, I., & Wistuba, M. (2017). Contribution to understanding the post-mining landscape –Application of airborn LiDAR and historical maps at the example from Silesian Upland (Poland). AIP Conference Proceedings, 1906(1), 170017. doi:10.1063/1.5012452

Guennebaud, G., & Gross, M. (2007). Algebraic point set surfaces. ACM Transactions On Graphics, 26(3), 23. doi:10.1145/1276377.1276406

Gutiérrez Lloret, S. (1988). Cerámica común paleoandalusí del sur de Alicante, siglos VII-X. Alicante: Caja de Ahorros Provincial de Alicante.Happa, J., Mudge, M., Debattista, K., Artusi, A., Gonçalves, A., & Chalmers, A. (2010). Illuminating the past: state of the art. Virtual Reality, 14(3), 155–182. doi:10.1007/s10055-010-0154-x

Hernández Pérez, M. (1989). La Prehistoria. In F. Moreno Sáez, Historia de Alicante. Vol. I(pp. 41–60). Alicante: Ayuntamiento de Alicante.

Hixon, S., Lipo, C., Hunt, T., & Lee, C. (2017). Using Structure from Motion mapping to record and analyze details of the Colossal Hats (Pukao) of monumental statues on Rapa Nui (Easter Island). Advances in Archaeological Practice, 6(1), 42–57. doi:10.1017/aap.2017.28

Iturbe, A., Cachero, R., Cañal, D., & Martos, A. (2018). Virtual digitization of caves with parietal paleolithic art from Bizkaia. Scientific analysis and dissemination through new visualization techniques. Virtual Archaeology Review, 9(18), 57-65. doi:10.4995/var.2018.7579

Kokalj, Ž., Zakšek, K., & Oštir, K. (2011). Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models. Antiquity, 85(327), 263–273. doi:10.1017/s0003598x00067594

Kokalj, Z., & Hesse, R. (2017). Airborne laser scanning raster data visualization: a guide to good practice. Ljubljana: Založba ZRC.

Leret, G., Núñez, A., Colodrón, I., & Martínez del Olmo, W. (1978). Mapa y memoria explicative de la Hoja nº 871 (Elda). Mapa Geológico de España E. 1:50.000 (MAGNA), Segunda Serie, Primera edición. IGME, Madrid.

López Lillo, J. (2010). Estructuras de combustión en el entorno de la sierra de Fontcalent (Alacant): un primer acercamiento a su estudio. Lvcentvm, (29), 199–216. doi:10.14198/lvcentvm2010.29.12

López-Menchero Bendicho, V., Marchante Ortega, Á., Vincent, M., Cárdenas Martín-Buitrago, Á., & Onrubia Pintado, J. (2017). Uso combinado de la fotografía digital nocturna y de la fotogrametría en los procesos de documentación de petroglifos: el caso de Alcázar de San Juan (Ciudad Real, España). Virtual Archaeology Review , 8(17), 64–74. doi:10.4995/var.2017.6820

Malzbender, T., Gelb, D., Wolters, H., & Zuckerman, B. (2000). Enhancement of shape perception by surface eflectance transformation.Hewlett-Packard Technical Report HPL-2000-38, March 2000.

Mañana-Borrazás, P., Gianotti García, C., González Insua, F., & Caramés Moreira, V. (2010). Aplicación de tecnologías geoespaciales para la documentación del círculo lítico de Monte Lobeira, Vilanova de Arousa (Pontevedra). Cuadernos de Estudios Gallegos, 57(123), 25–52. doi:10.3989/ceg.2010.v57.i123.75

Mayoral, A., Toumazet, J., Simon, F., Vautier, F., & Peiry, J. (2017). The highest gradient model: A new method for analytical assessment of the efficiency of LiDAR-derived visualization techniques for landform detection and mapping. Remote Sensing, 9(12), 120. doi:10.3390/rs9020120

Miller, G.S.P., 1994. Efficient algorithms for local and global accessibility shading. (1994). In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. ACM, SIGGRAPH (pp. 319–326). Orlando.

Moyes, H., & Montgomery, S. (2016). Mapping ritual landscapes using Lidar. Advances in Archaeological Practice, 4(3), 249–267. doi: 10.7183/2326-3768.4.3.249

Mudge, M., Schroer, C., Earl, G., Martinez, K., Pagi, H., & Toler-Franklin, C. et al. (2010). Principles and practices of robust, photography-based digital imaging techniques for museums. The 11th International Symposium on Virtual reality, Archaeology and Cultural Heritage VAST. doi:10.2312/PE/VAST/VAST10S/111-137

Pires, H., Gonçalves-Seco, L., Fonte, J., Mañana, P., Parcero-Oubiña, C., Fábrega-Álvarez, P., & Señorán, J. (2015). From point clouds to archaeological evidence: Improving visualization and spatial analysis of 3D data. In Sensing the Past. Contributions from the ArcLand Conference on Remote Sensing for Archaeology (pp. 52–53).Bonn, Germany. doi:10.11588/propylaeumdok.00002513

Pires, H., Martínez Rubio, J., & Elorza Arana, A. (2015). Techniques for revealing 3D hidden archeological features: morphological residual models as virtual-polynomial texture maps. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4, 415–421. doi:10.5194/isprsarchives-xl-5-w4-415-2015

Rodríguez-Tovar, F., & Uchman, A. (2004). Trace fossils after the KT boundary event from the Agost section, SE Spain. Geological Magazine, 141(4), 429–440. doi:10.1017/s0016756804009410

Vilas-Estévez, B., Vázquez-Martínez, A., & Carrero-Pazos, M. (2017). Going further: (Re) Discovering rock art carvings with photogrammetric techniques in Galicia (North-West Iberian Peninsula). In A. Ippolito, & M. Cigola (Eds.), Handbook of Research on Emerging Technologies for Digital Preservation and Information Modeling (pp. 175–200). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-0680-5.ch008

Ximénez de Embún, M. (2012). Revisando la transición. El final de la Antigüedad Tardía en el yacimiento de Fontcalent (Alicante). Marq, arqueología y museos, 05,173–186



How to Cite

Torregrosa-Fuentes, D., Spairani Berrio, Y., Huesca Tortosa, J. A., Cuevas González, J., & Torregrosa Fuentes, A. J. (2018). Application of automated photogrammetry and lighting techniques with GIS tools for visualisation and analysis of a slab with anthropomorphous reliefs. Virtual Archaeology Review, 9(19), 114–124.