• A. Belenguer Universidad de León
  • M. Fondevila Universidad de Zaragoza
  • J. Balcells Universitat de Lleida
  • Leticia Abecia Universidad de Zaragoza
  • M. Lachica Consejo Superior de Investigaciones Científicas - CSIC
  • M.D. Carro Universidad de León



rabbit, caecal fermentation, methanogenesis, reductive acetogenesis


Methane formation and caecal fermentation patterns were studied in vivo and in vitro in 16 white New Zealand rabbits (70-80 d and 2.27 ± 0.064 kg) allocated to four diets formulated to have a similar neutral detergent fibre (33.8±0.53%) and protein (17.7±0.33%) content, with two different fibre sources (alfalfa hay, AH or sugar beet pulp, SP) and starch (wheat or maize). Animals received the diet for 16 to 20 days before methane production was measured in vivo in a respiratory chamber.  Animals were subsequently slaughtered at approximately 9:00 and caecal contents were sampled and used as inoculum for in vitro incubations to determine gas and methane production.  Volatile fatty acid (VFA) and purine base (PB) concentrations were determined from both caecal content and incubation medium after 6 h.  Total VFA concentration in caecal content decreased (P<0.05) in rabbits fed AH-maize diet compared with rabbits fed AH-wheat and SP-maize diets (37.7 vs. 59.6 mM), with those fed SP-wheat showing an intermediate value (53.0 mM).  Fermentation pattern was affected when maize was the source of starch compared to wheat, with lower acetate (0.72 vs. 0.79; P<0.01) and higher butyrate (0.19 vs. 0.14; P<0.001) molar proportions.  Fermentation in vivo vs. in vitro showed some differences (molar proportions of acetate, 0.76 vs. 0.73, P<0.001, and propionate, 0.069 vs. 0.091, P<0.001, in vivo and in vitro, respectively), probably due to differences in pH (6.0 vs. 6.7 in vivo and in vitro; P<0.001).  Only 2 out of 16 rabbits produced a substantial volume of methane in vivo (on average, 12.6 ml/BW0.75/d or 0.56 mmol/BW0.75/d), showing a high inter-individual variability that hindered comparison of treatment differences.  In contrast, methane was detected in vitro in all cases and volumes were more homogenous, a higher formation (P<0.05) being observed with maize compared to wheat.  A similar effect was shown in total gas production.  The low methane production and H2 recovery suggest the importance of H2 disposal mechanisms other than methanogenesis, such as reductive acetogenesis.  PB concentration in caecal content and the incubation medium, as an index of microbial concentration, was highest when SP was added with maize (P<0.05).


Download data is not yet available.

Author Biographies

A. Belenguer, Universidad de León

Instituto de Ganadería de Montaña. CSIC

M. Fondevila, Universidad de Zaragoza

Depto. Producción Animal y Ciencia de los Alimentos

J. Balcells, Universitat de Lleida

Depto. Producción Animal. ETSIA

Leticia Abecia, Universidad de Zaragoza

Depto. Producción Animal y Ciencia de los Alimentos

M. Lachica, Consejo Superior de Investigaciones Científicas - CSIC

Unidad de Nutrición Animal. Estación Experimental Zaidín.

M.D. Carro, Universidad de León

Depto. Producción Animal


AOAC. 2005. Official Methods of Analysis. AOAC International, 18th ed. W. Horwitz and G.W. Latimer (eds.), AOAC International, Gaithersburg, MA, USA.Bach Knudsen K.E. 1997. Carbohydrate and lignin content in plant materials used in animal feeding. Anim. Feed Sci., Technol., 67: 319-338.

Belenguer A., Balcells J., Fondevila M., Torre C. 2002. Caecotrophes intake in growing rabbits estimated either from urinary excretion of purine derivatives or from direct measurement using animals provided with a neck collar: effect of type and level of dietary carbohydrate. Anim. Sci., 74: 135-144.

Bennegadi N., Fonty G., Millet L., Gidenne T., Licois D., 2003. Effects of age and dietary fibre level on caecal microbial communities of conventional and specific pathogen-free rabbits. Microb. Ecol. Health Dis., 15: 23-32.


Bernalier A., Doisneau E., Cordelet C., Beaumatin P., Durand M., Grivet J.P. 1993. Competition for hydrogen between methanogenesis and hydrogenotrophic acetogenesis in human colonic flora studied by 13C NMR. Proc. Nutr. Soc., 52: 118A.

Bird A.D., Vuarani M., Brown I., Topping D.L. 2007. Two high-amylose maize starches with different amounts of resistant starch vary in their effects on fermentation, tissue and digesta mass accretion, and bacterial populations in the large bowel of pigs. Br. J. Nutr., 97: 134-144.



Blas E., Gidenne T. 1998. Digestion of starch and sugars. In: C. de Blas, J. Wiseman (eds.) The Nutrition of the Rabbit, CABI Publishing, Wallingford, UK, pp. 17-38.

De Graeve K.G., Grivet J.P., Durand M., Beaumatin P., Cordelet C., Hannequart G., Demeyer D. 1994. Competition between reductive acetogenesis and methanogenesis in the pig large-intestinal flora. J. Appl. Bacteriol., 76: 55-61.


Demeyer D.I. 1991. Quantitative aspects of microbial metabolism in the rumen and hindgut. In: Jouany JP. (Ed). Rumen Microbial Metabolism and Ruminant Digestion. INRA, Paris, 217-237.

Doré J., Morvan B., Rieu-Lesme F., Goderel I., Gouet P., Pochart P. 1995. Most probable number enumeration of H2-utilizing acetogenic bacteria from the digestive tract of animals and man. FEMS Microbiol. Lett., 130: 7-12.


Drake H.L. 1994. Introduction to acetogenesis. In: Drake H.L. (Ed). Acetogenesis. Chapman & Hall, New York, London, 3-60.

FEDNA. 2003. Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos (2nd Ed.). De Blas C., González Mateos G., García Rebollar P. (Eds.), Fundación Española para el Desarrollo de la Nutrición Animal, Madrid.

Franz R., Soliva C.R., Kreuzer M., Hummel J., Clauss M. 2010. Methane output of rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus) fed a hay-only diet: implications for the scale of methane production with body mass in non-ruminant mammalian herbivores. Comp. Biochem. Physiol. A, 158: 177-181.

Gibson G.R., Cummings J.H., Macfarlane G.T., Allison C., Segal I., Vorster H.H., Walker A.R.P. 1990. Alternative pathways for hydrogen disposal during fermentation in the human colon. Gut, 31: 679-683.


PMid:2379871 PMCid:1378495

Gidenne T., Perez J.M. 1993. Effect of dietary starch origin on digestion in the rabbit. 2. Starch hydrolysis in the small intestine, cell wall degradation and rate of passage measurements. Anim. Feed Sci. Technol., 42: 249-257.


Gidenne T., Arveux P., Madec O. 2001. The effect of the quality of dietary lignocellulose on digestion, zootechnical performance and health of the growing rabbit. Anim. Sci., 73: 97–104.

Goering H.K., van Soest P.J. 1970. Forage fiber analysis (apparatus, reagents, procedures and some applications). Agric. Handbook No.379, ARS USDA, Washington D.C.

Jensen B.B. 1996. Methanogenesis in monogastric animals. Environ. Monitor. Asses., 42: 99-112.


Jezierny D., Steingass H., Drochner W. 2007. In vitro gas formation and fermentation parameters using different substrates and pig faecal inocula affected by bile extract. Livest. Sci., 109: 145-148.


Jouany J.P. 1982. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sci. Alim., 2: 131-144.

Kohn R.A., Dunlap T.F. 1998. Calculation of the buffering capacity of bicarbonate in the rumen and in vitro. J. Anim. Sci., 76: 1702-1709.


Lachica M., Aguilera J.F., Prieto C. 1995. A confinement respiration chamber for short gaseous exchange measurements. Arch. Anim. Nutr., 48: 329-336.



Macfarlane G.T. and Gibson G.R. 1997. Carbohydrate fermentation, energy transduction and gas metabolism in the human large intestine. In: Mackie RI. White BA (Eds.) Gastrointestinal Microbiology, Vol. 1. Chapman and Hall, London, 269–318.

Marinas A., García-González R., Fondevila M. 2003. The nutritive value of five pasture species occurring in the summer grazing ranges of the Pyrenees. Anim. Sci., 76: 461–469.

Marounek M., Fievez V., Mbanzamihigo L., Demeyer D., Maertens L. 1999. Age and incubation time effects on in vitro caecal fermentation pattern in rabbits before and after weaning. Arch. Anim. Nutr., 52: 195-201.



Martín-Orúe S.M., Balcells J., Guada J., Castrillo C. 1995. Endogenous purine and pyrimidine derivative excretion in pregnant sows. Br. J. Nutr., 73: 374-385.

Martínez M.E., Ranilla M.J., Tejido M.L., Saro C., Carro M.D. 2010. The effect of the diet fed to donor sheep on in vitro methane production and ruminal fermentation of diets of variable composition. Anim. Feed Sci. Technol. 158: 126–135.


Michelland R.J., Monteils V., Combes S., Cauquil L., Gidenne T., Fortun-Lamothe L., 2010. Comparison of the archaeal community in the fermentative compartment and faeces of the cow and the rabbit. Anaerobe, 16: 396-401.



Morvan B., Bonnemoy F., Fonty G., Gouet P. 1996. Quantitative determination of H2-utilizing acetogenic and sulphate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr. Microbiol., 32: 129-133.



Piattoni F., Maertens L., Demeyer D.I. 1995. Age dependent variation of caecal contents composition of young rabbits. Arch. Anim. Nutr., 48: 347-355.



Piattoni F., Demeyer D.I., Maertens L. 1996. In vitro study of the age-dependent caecal fermentation pattern and methanogenesis in young rabbits. Reprod. Nutr. Dev., 36: 253-261.


Raskin L., Stromley J.M., Rittman B.E., Stahl B.A. 1994. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol., 60: 1232-1240.

PMid:7517128 PMCid:201464

Russell J.B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci., 81: 3222-3230.


Theodorou K.M., Williams B.A., Dhanoa M.S., McAllan A.B., France J. 1994. A simple gas production method using a pressure transducter to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol., 48: 185-197.


Van Soest P.J., Robertson J.B., Lewis R.A. 1991. Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597.


Wolin M.J., Miller T.L., Stewart C.S. 1997. Microbe-microbe interaction. In: Hobson PN. Stewart CS. (Eds.) The rumen microbial ecosystem, 2nd Ed., Blackie Academic & Professional, London, 467-488.